Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Finite element modeling method of centrifugal rotary processing

https://doi.org/10.23947/1992-5980-2019-19-2-214-220

Abstract

Introduction. In modern production, when performing finishing operations, centrifugal rotary processing in the medium of abrasive plays an important role. High productivity, low costs and extensive technological capabilities are the main advantages of these cleaning and finishing operations. This paper considers the process of abrasive particle – workpiece surface interaction within the framework of the static contact problem of the elasticity theory. Thus, plastic deformation in the contact area comes into account.

Materials and Methods. The abrasive particle (corundum) is simulated with a linearly elastic body, whose Young's modulus is significantly larger than that of the work material. The process material (steel) is simulated with an elastoplastic bilinear body using the von Mises yield criterion.

Research Results. Finite element modeling of the structures under consideration was performed in the ANSYS CAE package. The process of abrasive particle – workpiece surface interaction was simulated; its stress-strain state was analyzed. The results of numerical experiments are presented. They have determined how equivalent plastic strains are distributed at depths of the cone penetration of 0.01 mm and 0.05 mm. The data obtained, as well as the areas of plastic strain values of more than 1%, are visualized in the ANSYS CAE package.

Discussion and Conclusions. It is established that the equivalent plastic deformation is proportional to the depth of penetration (DP). It reaches a minimum value of 0.158 at DP = 0.01 mm, and a maximum of 0.825 at DP = 0.05 mm. The dependences of the plastic region sizes on DP are determined for cases when the plastic deformation exceeds 1%. At the maximum penetration (0.05 mm), the deformation radius is 1 mm, and the depth is 0.8 mm. On the basis of the data obtained as a result of the conducted research, the parameters of the technological process (rotational speed, size of the abrasive surface, mass of abrasive particles) that affect the workpiece – abrasive particle interaction can be selected. A judicious choice of these parameters will increase the processing efficiency

About the Authors

A. N. Soloviev
Don State Technical University
Russian Federation


M. A. Tamarkin
Don State Technical University
Russian Federation


Nguyen Van Tho
Don State Technical University; Hai Phong University, Hai Phong City
Viet Nam


References

1. Тамаркин, М. А. Исследование удаления металла при центробежно-роторной обработке в абразивной среде / М. А. Тамаркин, Э. Е. Тищенко, В. В. Друппов // Вестник Рыбинской гос. авиационной технологич. академии им. П. А. Соловьева. — 2007. — № 1 (11). — C. 169–186.

2. Теоретические и экспериментальные исследования процессов обработки фасонных поверхностей деталей свободным абразивом / М. А. Тамаркин [и др.] // Упрочняющие технологии и покрытия. — 2011. — № 11. — С. 27– 31.

3. Тамаркин, М. А. Формирование параметров качества поверхности для центробежно-роторной обработки в абразивной среде / М. А. Тамаркин, Э. Е. Тищенко, В. В. Друппов // Упрочняющие технологии и покрытия. — 2007. — № 10. — C. 19–23.

4. Корольков, Ю. В. Обеспечение надежности технологических процессов центробежно-ротационной обработки свободным абразивом // Вестник Дон. гос. техн. ун-та. — 2011. — № 8. — С. 1247–1254.

5. Шведова, А. С. Обеспечение надежности технологического процесса центробежно-ротационной отделочноупрочняющей обработки / А. С. Шведова, Д. В. Казаков // Вестник Дон. гос. техн. ун-та. — 2014. — № 4. — С. 69–83.

6. Крагельский, И. В. Трение и износ / И. В. Крагельский // Москва : Машиностроение, 1968. — 480 с.

7. Grützmacher, Ph. G. The influence of centrifugal forces on friction and wear in rotational sliding / Ph. G. Grützmacher // Tribology International. — 2017. — № 116. — P. 256–263. DOI:org/10.1016/j.triboint.2017.07.021.

8. Theoretical and Simulation Analysis of Abrasive Particles in Centrifugal Barrel Finishing: Kinematics Mechanism and Distribution Characteristics / Wenhui Li [et al.] // Powder Technology. — 2017. — № 318. — P. 518–527. DOI:10.1016/j.powtec.2017.06.033.

9. Aurich, J. C. Sustainability of abrasive processes / J. C. Aurich, M. Hauschild, M. Carrella // CIRP Annals. Manufacturing Technology. — 2013. — № 62. — P. 653–672.

10. Finite Element Analysis of Traction Gear Using ANSYS / P. Silori [et al.] // Materialstoday Proceedings. — 2015. — Vol. 2. — P. 2236–2245. DOI. org/10.1016/j.matpr.2015.07.243


Review

For citations:


Soloviev A.N., Tamarkin M.A., Tho N.V. Finite element modeling method of centrifugal rotary processing. Vestnik of Don State Technical University. 2019;19(3):214-220. https://doi.org/10.23947/1992-5980-2019-19-2-214-220

Views: 680


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)