Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Two ways of organizing scalar product in the boundary state method

https://doi.org/10.23947/1992-5980-2020-20-1-15-24

Abstract

Introduction. The influence of two ways of organizing scalar product on the convergence rate of the solution in the energy method of boundary states is considered. The method is based on the spaces of internal and boundary states which are conjugated through isomorphism. Both spaces are orthonormalized using one scalar product or another. The desired state is expanded in the Fourier series according to the elements of the orthonormalized basis; and the coefficients of this linear combination are determined. The two methods differ in the assignment of scalar products and the calculation of the Fourier coefficients.

Materials and Methods. In relation to the method of boundary states, a new theory of organizing a scalar product in the spaces of internal and boundary states is proposed. Computational algorithms are constructed for its practical implementation. In the traditional (first) approach, the internal energy of elastic deformation is used as an orthogonalizer in the space of internal states. Here, the Fourier coefficients are the work of given forces on the basis vectors of displacement of the boundary points. In the studied (second) approach, scalar products are integrals of the cross products of the basis force vectors at the boundary. Accordingly, the Fourier coefficients are calculated as integrals of the product of the given forces at the body boundary by the basic force vectors.

Results. A numerical study of the first primal axisymmetric problem of the elasticity theory for a transversely isotropic cylinder in the absence and presence of mass forces is conducted. In the absence of mass forces, an analysis of the elas-tic fields obtained for the same number of used basic elements has shown that the second method has the greatest accuracy of the results. Under solving the problem with the presence of mass forces, the second method did not show effi-ciency in terms of the uniqueness of the solution; however, it is quite suitable for constructing a multitude of elastic fields used to solve more complex problems.

Discussion and Conclusions. The results obtained can be used to solve boundary-value problems of mechanics of not only an anisotropic body, but also an isotropic one. When solving more complex problems, such as contact and mixed ones, the issue of the rate of convergence requires a separate study.

About the Author

D. A. Ivanychev
Lipetsk State Technical University
Russian Federation
Lipetsk.


References

1. Гоголева, О. С. Примеры решения первой основной краевой задачи теории упругости в полуполосе (симметричная задача) / О. С. Гоголева // Вестник Оренбургского государственного университета. — 2012. — № 9(145). — С. 138–142.

2. Володченков, А. М. Об одном методе решения первой основной задачи теории упругости для однородного анизотропного тела / А. М. Володченков, А. В. Юденков // Universum: Технические науки. — 2015. — № 6(18). — С. 1–9. ― URL : http://7universum.com/ru/tech/archive (дата обращения : 07.12. 2019).

3. Суходолова, Ю. С. О конечном элементе на основе вариационного принципа Кастильяно для плоских задач теории упругости / Ю. С. Суходолова, Н. А. Труфанов // Вестник Пермского национального исследовательско-го политехнического университета. Механика. — 2012. — № 1. — С. 168–178.

4. Пожарский, Д. А. Сравнение точных решений контактных задач для трансверсально изотропного полупространства / Д. А. Пожарский, Д. Б. Давтян // Вестник Донского государственного технического университета. — 2015. — № 15(1). — С. 23–28. DOI: https://doi.org/10.12737/10371.

5. Иванычев, Д. А. Метод граничных состояний в приложении к осесимметричным задачам для анизотропных тел / Д. А. Иванычев // Вести вузов Черноземья. — 2014. — № 1. — С. 19–26.

6. The method of boundary states in problems of torsion of anisotropic cylinders of finite length / D. A. Ivanychev [et al.] // International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. — 2019. — Vol. 10, iss. 2. — P. 183–191. DOI: https://doi.org/10.14456/ITJEMAST.2019.18.

7. An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations / V. B. Penkov [et al.] // Journal of Physics: Conf. Series. — 2018. — Vol. 973, iss. 012015. — 10 p. DOI: https://doi.org/10.1088/1742-6596/973/1/012015.

8. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws / V. B. Penkov [et al.] // Journal of Physics: Conf. Series. — 2018. — Vol. 973, iss. 012016. — 11 p. DOI: https://doi.org/10.1088/1742–6596/973/1/012016.

9. Using computer algebra to construct analytical solutions for elastostatic problems / V. B. Penkov [et al.] // Journal of Physics: Conf. Series. — 2019. — Vol. 1203, iss. 012020. — 12 p. DOI: 10.1088/1742-6596/1203/1/012020.

10. Penkov, V. B. The use of the method of boundary states to analyse an elastic medium with cavities and inclusions / V. B. Penkov, L. V. Satalkina, А. S. Shulmin // Journal of Applied Mathematics and Mechanics. — 2014. — Vol. 78, iss. 4. — P. 384–394. DOI: https://doi.org/10.1016/j.jappmathmech.2014.12.010.

11. Пеньков, В. Б. Метод граничных состояний для решения задач линейной механики / В. Б. Пеньков, В. В. Пеньков // Дальневосточный математический журнал. — 2001. — Т. 2, № 2. — С. 115–137.

12. Лехницкий, С. Г. Теория упругости анизотропного тела. / С. Г. Лехницкий. — Москва : Наука, 1977. — 416 с. 13. Александров, А. Я. Пространственные задачи теории упругости / А. Я. Александров, Ю. И. Соловьев. — Москва : Наука, 1978. — 464 с.


Review

For citations:


Ivanychev D.A. Two ways of organizing scalar product in the boundary state method. Vestnik of Don State Technical University. 2020;20(1):15-24. https://doi.org/10.23947/1992-5980-2020-20-1-15-24

Views: 459


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)