On solving problems of operational forecasting of main pipeline weld joint quality
https://doi.org/10.23947/1992-5980-2020-20-1-42-50
Abstract
Introduction. Since welding is the only means to connect pipe lengths into a continuous line when constructing main pipelines, modern quality management systems for the welding industry products are based on minimizing the occurrence of specific defects. This is achieved through monitoring and documenting welding procedures.
Materials and Methods. The analysis of monitoring systems customized for manual, mechanized and automatic orbital welding has shown that the industry urgently needs systems that not only control and document the welding process, but also predict the quality of weld joints. This actualizes the need to develop an intelligent module that could, basing on real-time monitoring results, predict the quality of welded joints on the fly.
Results. Since the theoretical connection between the forecasting results and weld quality attributes is characterized by the interaction of a significant number of physical phenomena continuous in time, the results of welding can be described only by a sufficiently complete nonstationary physicomathematical model of the welding process. However, in order to be able to predict the results of welding directly during the monitoring of the process, a simplified forecasting model is proposed whose key feature is the ability to perform calculations synchronously with the real process, which is implemented in a real-time mode with a given interval.
Discussion and Conclusions. The major obstacle to the successful functioning of the operational forecasting module, apart from the length of the numerical solution of equations, is an estimation error. To ensure the minimum error of virtual display during simplification, it is necessary to conduct comprehensive studies of the significance and influence of individual factors and phenomena on quality attributes. These observations determined the content and sequence of work on the creation and implementation of an intelligent module for the operational forecasting of welding quality.
Undoubtedly, the information on the forecasting of the weld joint quality should enter a higher-level pipeline quality management system, as well as be analyzed by construction organizations in order to develop preventive measures to improve the organization and performance of welding work.
About the Authors
A. E. FilyakovRussian Federation
Moscow.
M. A. Sholokhov
Russian Federation
Ekaterinburg.
References
1. Мустафин, Ф. М. Современные технологии сварки трубопроводов: учебное пособие / Ф. М. Мустафин, Н. Г. Блехерова, Л. И. Быков. — Санкт-Петербург : Недра, 2010. — 560 с.
2. Опыт разработки и применения современных отечественных технологий и оборудования для автоматической орбитальной сварки магистральных газопроводов / О. Б. Гецкин [и др.] // Сварка и Диагностика. — 2010. — № 6. — С. 51–57.
3. Реализация адаптивных технологий сварки кольцевых стыков магистральных трубопроводов / Н. П. Алешин [и др.] // Сварка и Диагностика. — 2011. — № 5. — С. 49–53.
4. Алешин, Н. П. Современные способы сварки: учебное пособие / Н. П. Алешин, В. И. Лысак, В. Ф. Лукьянов. — Москва: МГТУ им. Н. Э. Баумана, 2011. — 58 с.
5. Гладков, Э. А. Регистратор параметров сварки / Э. А. Гладков // Сварочное производство. — 2000. — № 3. — С. 46–47.
6. Гаврилов, А. И. Видеокомпьютерные технологии построения компактных моделей протяженных сварных швов в системах автоматизированного мониторинга качества при строительстве магистральных тру-бопроводов / А. И. Гаврилов, Э. А. Гладков, Р. А. Перковский // Сварка и Диагностика. — 2014. — № 1. — С. 57–61.
7. Kuvin, B. F. Captured: Real-Time welding data to optimize quality, efficiency / B. F. Kuvin, L. A. Kren // MetalForming magazine. — 2016. — Vol. 50, no. 3. — P. 40–43.
8. On-line quality monitoring in short-circuit gas metal arc welding / S. Adolfsson [et al.] // Welding Journal. -1999. — Vol. 78, no. 2. — P. 59s–73s.
9. Monitoring and control of penetration in GTAW and pipe welding / X. R. Li [et al.] // Welding Journal. — 2013. — Vol. 92, no. 6. — P. 190s–196s.
10. Choi, J. H. Simulation of dynamic behavior in a GMAW system / J. H. Choi, J. Y. Lee, C. D. Yoo // Welding Journal. — 2001. — Vol. 80, no. 10. — P. 239s–245s.
11. Control of the weld quality using welding parameters in a robotic welding process / M.-H. Park [et al.] // Journal of Achievements in Materials and Manufacturing Engineering. — 2018. — Vol. 87, no. 1. — P. 32–40.
12. Булычев, В. В. Способы и средства мониторинга и автоматизации сварочных процессов: учебное пособие / В. В. Булычев. — Калуга : Манускрипт, 2018. — 44 с.
13. Leifsson, L. Surrogate modelling and optimization using shape-preserving response prediction: a review / L. Leifsson, S. Koziel // Journal Engineering Optimization. — 2015. — Vol. 48, no. 3. — P. 476–496.
14. Determination of welding parameters for shielded metal arc welding / U. Soy [et al.] // Scientific Research and Essays. — 2011. — Vol. 6, no. 15. — P. 3153–3160.
15. Харионовский, О. В. Мониторинг объектов линейной части магистральных газопроводов / О. В. Харионовский // Территория Нефтегаз. — 2009. — № 4. — С. 22–25.
16. Лисин, Ю. В. Мониторинг магистральных нефтепроводов в сложных геологических условиях / Ю. В. Лисин, А. А. Александров // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. — 2013. — № 2. — С. 22–27.
17. Создание, внедрение и сопровождение архива электронных копий и оцифрованных данных трассы магистрального нефтепровода / В. И. Суриков [и др.] // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. — 2015. — № 4. — С. 52–60.
Review
For citations:
Filyakov A.E., Sholokhov M.A. On solving problems of operational forecasting of main pipeline weld joint quality. Vestnik of Don State Technical University. 2020;20(1):42-50. https://doi.org/10.23947/1992-5980-2020-20-1-42-50