Investigation of crack propagation in the surface white layer of rail steel
https://doi.org/10.23947/1992-5980-2020-20-2-125-136
Abstract
Introduction. The paper is devoted to the evaluation of cracking of white layers formed on the surface of the rail while in operation. Cracks are detected in the white layer of rail steel after one thousand test cycles. This is due to tensile and shear stresses on the surface of the wheel-rail contact spot. The paper presents the study results of the morphological characteristics of the white layer on the rail surface.
Materials and Methods. The object of study (rail surface after operation) was examined under a microscope. Then, a two-dimensional model of finite elements of the plane deformation was developed to simulate the dynamic characteristics of the white layer cracking. Mathematical models describing crack propagation are proposed. For this, we applied the criterion of the elastic plastic fracture mechanics, the J-integral method. The SYSWELD program performed numerical modeling of the formation of a white layer and the distribution of residual stresses.
Results. Optical images of the microstructure of the cross section of a white layer on the rail surface after operation are presented. Two different types of cracks were fixed at the trailing edge of the white layer of the samples studied. The SYSWELD program visualized fragments of simulating the mechanism of the white layer formation with the distribution of residual stresses, compression, and tension. The calculation results show that the values of the J-integral for all three cracks slightly decrease if the crack length reaches 10-50 gm.
Discussion and Conclusions. The results obtained are applicable to assess the wear resistance of rail steels and predict the direction of crack growth. Comparisons of J-integral maxima have shown that under identical load conditions, crack no. 1 is likely to grow faster than cracks nos. 2 and 3. With an increase in the length of the crack, the maxima of the J-integral of all three cracks decreased.
About the Authors
A. Yu. PerelyginaRussian Federation
Irkutsk.
V. Yu. Konyukhov
Russian Federation
Irkutsk.
A. E. Balanovskii
Russian Federation
Irkutsk.
References
1. Kogaev VP, Makhutov NA, Gusenkov AP. Raschety detalei mashin i konstruktsii na prochnost' i dolgovechnost' [Calculations of machine parts and structures for strength and durability]. Moscow: Mashinostroenie; 1985. 224 p. (In Russ.)
2. Broek D. Osnovy mekhaniki razrusheniya [Fundamentals of Fracture Mechanics]. Moscow: Nauka; 1974. 288 p. (In Russ.)
3. Vitvitskii PM, Popina SYu. Prochnost' i kriterii khrupkogo razrusheniya stokhasticheski defektnykh tel [Strength and criteria for brittle fracture of stochastically defective bodies]. Kiev: Naukova dumka; 1980. 186 p. (In Russ.)
4. Clayton P, Allery MBP. Metallurgical aspects of surface damage problems in rails. The Canadian Journal of Metallurgy and Materials Science. 1982;21(1):31–46.
5. Baumann G, Fecht H, Liebelt S. Formation of White-Etching Layers on Rail Treads. Wear. 1996;191:133–140. doi.org/10.1016/0043-1648(95)06733-7.
6. Newcom SB, Stobbs WM. A transmission electron microscopy study of the white etching layer on a railhead. Materials Science and Engineering. A. 1984;66(2):195–204. doi.org/10.1016/0025-416(84)90180-0.
7. Jirásková Y, Svoboda J, Schneeweiss O, et al. Microscopic investigation of surface layers on rails. Applied Surface Science. 2005;239(2):132–141. doi.org/10.1016/j.apsusc.2004.05.289.
8. Österle W, Rooch H, Pyzalla A, et al. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction. Materials Science and Engineering. A. 2001;303(1/2):150–157.
9. Lojkowski W, Djahanbakhsh M, Bürkle G, et al. Nanostructure formation on the surface of railway tracks. Materials Science and Engineering. A. 2001;303(1/2):197–208. doi.org/10.1016/S0921-5093(00)01947-X.
10. Zhang HW, Ohsaki S, Mitao S, et al. Microstructural investigation of white etching layer on pearlite steel rail. Materials Science and Engineering. A. 2006;421(1/2):191–199. doi.org/10.1016/j.msea.2006.01.033.
11. Chou YK, Evans CJ. White layers and thermal modeling of hard turned surfaces. International Journal of Machine Tools and Manufacture. 1999;39(12):1863–1881. doi.org/10.1016/S0890-6955(99)00036-X.
12. Clayton P. The relations between wear behavior and basic material properties for pearlitic steels. Wear. 1980;60(1):75–93.
13. Steenbergen М, Dollevoet R. On the mechanism of squat formation on train rails. Part II: growth. International Journal of Fatigue. 2013;47:373–381.
14. Li Z, Dollevoet R, Molodova M, et al. Squat growth — some observations and the validation of numerical predictions. Wear. 2013;271(1):148–157. doi.org/10.1016/j.wear.2010.10.051.
15. Olzak M, Stupnicki J, Wojcik R. Investigation of crack propagation during contact by a finite element method. Wear. 1991;146(3):119–128.
16. Bold PE, Brown MW, Allen RJ. Shear mode crack growth and rolling contact fatigue. Wear. 1991;144(1/2):307–317.
17. Ringsberg JW. Shear mode growth of short surface-breaking RCF cracks. Wear. 2005;258(7):955–963.
18. Seo J, Kwon S, Jun H, et al. Fatigue crack growth behavior of surface crack in rails. Procedia Engineering. 2010;2(1):865–872. doi.org/10.1016/j.proeng.2010.03.093.
19. Xin Zhao, Xiaogang Zhao, Chao Liu, et al. A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact. Wear. 2016;366–367:60–70 /doi.org/10.1016/j.wear.2016.06.001.
20. Trollé B, Baietto M-C, Gravouila A, et al. 2D fatigue crack propagation in rails taking into account actual plastic stresses. Engineering Fracture Mechanics. 2014;123:163–181. doi.org/10.1016/j.engfracmech.2014.03.020.
21. Bogdański S, Lewicki P. Experimental and theoretical investigation of the phenomenon of filling the RCF crack with liquid. Wear. 2005;258(7-8):1280–1287. doi.org/10.1016/j.wear.2004.03.038.
22. Makino T, Kato T, Hirakawa K . The effect of slip ratio on the rolling contact fatigue property of railway wheel steel. International Journal of Fatigue. 2012;36(1):68–79. doi.org/10.1016/j.ijfatigue.2011.08.014.
23. Dubourg MC, Lamacq V. A predictive rolling contact fatigue crack growth model: onset of branching, direction, and growth — role of dry and lubricated conditions on crack patterns. Journal of Tribology — Transactions of the ASME. 2002;124(4):680–688. DOI: 10.1115 / 1.1479698.
24. Benuzzi D, Bormetti E, Donzella G. Stress intensity factor range and propagation mode of surface cracks under rolling — sliding contact. Theoretical and Applied Fracture Mechanics. 2003;40(1):55–74. doi.org/10.1016/S0167-8442(03)00034-X.
25. Kalker JJ, Piotrowski J. Some New Results in Rolling Contact. Vehicle System Dynamics. 1989;18:223–242. doi.org/10.1080/00423118908968920.
26. Kato T, Sugeta A, Nakayama E. Investigation of influence of white layer geometry on spalling property in railway wheel steel. Wear. 2011;271(1):400–407. doi.org/10.1016/j.wear.2010.10.024.
27. Seo JW, Kwon S, Jun HK, et al. Numerical stress analysis and rolling contact fatigue of White Etching Layer on rail steel. International Journal of Fatigue. 2011;33(2):203–211. doi.org/10.1016/j.ijfatigue.2010.08.007.
28. Lian Q, Deng G, Juboori AA, et al. Crack propagation behavior in white etching layer on rail steel surface. Engineering Failure Analysis. 2019;104:816–829. doi.org/10.1016/j.engfailanal.2019.06.067.
29. Rice JR. A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks. Journal Applied Mechanics. 1968;35:379–386.
30. Rybicki EF, Kanninen MF. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics. 1977;9(4):931–938. doi.org/10.1016/0013-7944(77)90013-3.
31. Chow WT, Atluri SN. Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral. Computational Mechanics. 1995;16:417–425. https://doi.org/10.1007/BF00370563.
32. Danil'chenko SA, Nasedkin AV. Modelirovanie uprugogo indentirovaniya mnogosloinogo antifriktsionnogo pokrytiya rel'sa metodom konechnykh ehlementov [Modeling of elastic indentation of multilayer antifriction rail coating by the finite element method]. Izvestia RAS SamSC. 2011;13(3):1029–1032. (In Russ.)
33. Chebakov MI, Kolosova EM, Nasedkin AV. Modelirovanie kontaktnogo vzaimodeistviya tel s neodnorodnymi po glubine mekhanicheskimi svoistvami pri nalichii treniya v zone kontakta [Modeling of contact interaction of bodies with mechanical properties non-uniform in depth in the presence of friction in the contact zone]. Izvestia RAS SamSC. 2011;13(4):1252–1255. (In Russ.)
34. Nasedkin AV, Sukhov DYu, Chebakov MI. Modelirovanie kontaktnogo vzaimodeistviya zheleznodorozhnogo kolesa i rel'sa s tonkim trekhsloinym pokrytiem [Modeling of contact interaction between wheel and rail with thin triple-layered covering]. Vestnik RGUPS. 2010;2:11–16. (In Russ.)
35. Al-Juboori A, Wexlera D, Lia H, et al. Squat formation and the occurrence of two distinct classes of white etching layer on the surface of rail steel. International Journal of Fatigue. 2017;104:52–60. doi.org/10.1016/j.ijfatigue.2017.07.005.
36. Li S, Wu J, Petrov RH, et al. Brown etching layer: a possible new insight into the crack initiation of rolling contact fatigue in rail steels. Engineering Failure Analysis. 2016;66:8–18. doi.org/10.1016/j.engfailanal.2016.03.019.
Review
For citations:
Perelygina A.Yu., Konyukhov V.Yu., Balanovskii A.E. Investigation of crack propagation in the surface white layer of rail steel. Vestnik of Don State Technical University. 2020;20(2):125-136. https://doi.org/10.23947/1992-5980-2020-20-2-125-136