Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Stability analysis of wooden arches with account for nonlinear creep

https://doi.org/10.23947/2687-1653-2021-21-2-114-122

Abstract

Introduction. The paper deals with the calculation of wooden arches taking into account the nonlinear relationship between stresses and instantaneous deformations, as well as creep and geometric nonlinearity, are considered. The analysis is based on the integral equation of the viscoelastoplastic hereditary aging model, originally proposed by A.G. Tamrazyan [1] to describe the nonlinear creep of concrete.

Materials and Methods. The creep measure is taken in accordance with the work of I.E. Prokopovich and V.A. Zedgenidze [2] as a sum of exponential functions. The transition from the integral form of the creep law to the differential form is shown. The relationship between stresses and instantaneous deformations for wood under compression is determined from the Gerstner formula, and elastic work is assumed under tension. The solution is carried out using the finite element method in combination with the Newton-Raphson method and the Euler method according to the scheme that involves a stepwise increase in the load with correction of the stiffness matrix taking into account the change in the coordinates of the nodes with the sequential calculation of additional displacements of the nodes, which are due to the residual forces. The proposed approach for increasing the accuracy of determination of creep deformations at each step provides using the fourth-order Runge-Kutta method instead of the Euler method.

Results. Based on the Lagrange variational principle, expressions are obtained for the stiffness matrix and the vector of additional dummy loads due to creep. The method developed by the authors is implemented in the form of a program in the MATLAB environment. Calculation examples are given for parabolic arches simply supported at the ends without an intermediate hinge and with an intermediate hinge in the middle of the span under the action of a uniformly distributed load. The results obtained are compared in the viscoelastic and viscoelastic formulation. The reliability of the results is validated through the calculation in the elastic formulation in the ANSYS software package.

Discussion and Conclusions. For the arches considered, it is found that even with a load close to the instant critical, the growth of time travel is limited. Thus, the nature of their work under creep conditions differs drastically from the nature of the deformation of compressed rods. 

About the Authors

S. В. Yazyev
Don State Technical University
Russian Federation


V. I. Andreev
Moscow State University of Civil Engineering
Russian Federation


А. S. Chepurnenko
Don State Technical University
Russian Federation


References

1. Тамразян, А. Г. Механика ползучести бетона / А. Г. Тамразян, С. Г. Есаян. — Москва : МГСУ, 2011. — 320 с.

2. Прокопович, И. Е. Прикладная теория ползучести / И. Е. Прокопович, В. А. Зедгенидзе. — Москва : Стройиздат, 1980. — 239 с.

3. Вареник, А. С. О ползучести древесины / А. С. Вареник, К. А. Вареник // Современные проблемы науки и образования. — 2014. — № 2. — С. 88. — URL: http://www.science-education.ru/pdf/2014/2/429.pdf. (дата обращения: 19.03.2021).

4. Пятикрестовский, К. П. О программировании нелинейного метода расчета деревянных конструкций / К. П. Пятикрестовский, В. И. Травуш // Academia. Архитектура и строительство. — 2015. — №. 2. — С. 115– 119.

5. Pyatikrestovsky, K. P. Nonlinear analysis of statically indeterminate wooden structures and optimization of cross section dimensions of dome ribs / K. P. Pyatikrestovsky, B. S. Sokolov // International Journal for Computational Civil and Structural Engineering. — 2018. — Vol. 14 (4). — P. 130−139

6. Development of structures from solid wood for objects of infrastructure / K. P. Pyatikrestovsky, V. I. Travush, A. A. Pogoreltsev, A. A. Klyukin // International Journal for Computational Civil and Structural Engineering. — 2018. — Vol. 14 (1). — P. 145–154. https://doi.org/10.22337/2587-9618-2018-14-1-145-154

7. Pyatikrestovsky, K. P. The Study of Complex Stress States of Elements Filling the Cells Between the Ribs of Wooden Large-Span Domes / K. P. Pyatikrestovsky, B. S. Sokolov // International Journal for Computational Civil and Structural Engineering. — 2019. — Vol. 15 (1). — P. 140−152.

8. Varenik, K. A. Boltzmann principle of superposition in the theory of wood creep for deformations in time / K. A. Varenik, A. S. Varenik, R. S. Sanzharovskij // IOP Conference Series: Materials Science and Engineering. — 2018. — Vol. 441 (1). — 012057. — URL: https://iopscience.iop.org/article/10.1088/1757-899X/441/1/012057/meta (accessed: 11.04.2021).

9. Short-term and long-term longitudinal load tests of wooden rods / K. A. Varenik, A. S. Varenik, A. V. Kirillov, M. V. Shuvalov // IOP Conference Series: Materials Science and Engineering. — 2020. — Vol. 939 (1). — 012080. — URL: https://iopscience.iop.org/article/10.1088/1757-899X/939/1/012080/meta

10. Varenik, A. S. Model of stress-strain state of wooden rod under eccentric compression and transverse load / A. S. Varenik, K. A. Varenik // IOP Conference Series: Materials Science and Engineering. — 2019. — Vol. 656 (1). — 012052. — URL: https://iopscience.iop.org/article/10.1088/1757-899X/656/1/012052/pdf

11. The buckling of the physically nonlinear frame-rod structural systems / K. O. Dubrakova, S. V. Dubrakov, F. V. Altuhov, D. H. Galaeva // IOP Conference Series: Materials Science and Engineering. — 2019. — Vol. 698 (2). — 022007. — http://dx.doi.org/10.1088/1757-899X/698/2/022007

12. Дмитриева, К. О. Вопросы устойчивости стержневых элементов конструктивных систем из древесины при силовом и средовом нагружении / К. О. Дмитриева // Строительство и реконструкция. — 2016. — № 4. — С. 14–18.

13. Клюева, Н. В. Вопросы устойчивости стержневых элементов конструктивных систем из древесины различных пород при силовом и средовом нагружении в условиях повышенной влажности / Н. В. Клюева, К. О. Дмитриева // Строительство и реконструкция. — 2016. — № 5. — С. 60–68.

14. Вареник, А. С. Длительная несущая способность деревянных конструкций / А. С. Вареник, К. А. Вареник // Строительная механика инженерных конструкций и сооружений. — 2014. — № 2. — С. 23–30.

15. Пятикрестовский, К. П. К вопросу о выборе модулей упругости при расчете деревянных конструкций на прочность, устойчивость и по деформациям / К. П. Пятикрестовский // Строительная механика и расчет сооружений. — 2012. — № 6. — С. 73–79.


Review

For citations:


Yazyev S.В., Andreev V.I., Chepurnenko А.S. Stability analysis of wooden arches with account for nonlinear creep. Advanced Engineering Research (Rostov-on-Don). 2021;21(2):114-122. https://doi.org/10.23947/2687-1653-2021-21-2-114-122

Views: 818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)