Finite element modeling of the joint action of flow slide and protective structure
https://doi.org/10.23947/2687-1653-2021-21-2-133-142
Abstract
Introduction. In the context of the problem of plane deformation, a finite-element model of a natural landslide slope is developed. It allows for the joint work of a flow slide and a protective engineering structure. The Drucker-Prager model is used to take into account the physical nonlinearity of the slope layer material. To activate the kinematic instability, a viscoelastic interlayer is introduced into the design scheme, along which the landslide layer slides.
Materials and Methods. Numerical experiments were performed using the ANSYS Mechanical software package, which implements the finite element method in the form of the displacement method. Slope discretization is performed on the basis of PLANE42 flat four-node finite elements. To simulate the displacement of the landslide layer relative to the fixed base, the combined viscoelastic elements COMBIN14 were used.
Results. A physically nonlinear model of a natural landslide slope consisting of a base, a landslide layer, and a viscoelastic interlayer, is formalized. An engineering technique for analyzing the stress-strain state of the “slopeprotective structure” system has been developed, taking into account the kinematic instability of the landslide layer. A series of computational experiments was carried out.
Discussion and Conclusion. Based on the calculations performed, it is shown that the proposed method enables to specify the force action of the landslide layer on the protective structure and, thereby, to increase the reliability of the risk assessment when activating the landslide process.
About the Authors
Р. Р. GaidzhurovRussian Federation
N. А. Saveleva
Russian Federation
V. А. Dyachenkov
Russian Federation
References
1. Seyed-Kolbadi, S. M. An improved strength reduction-based slope stability analysis / S. M. Seyed-Kolbadi, J. Sadoghi-Yazdi, M. A. Hariri-Ardebili // Geosciences. — 2019. — Vol. 9 (1). — P. 55. https://doi.org/10.3390/geosciences9010055
2. Griffiths, D. V. Three-dimensional slope stability analysis by elasto-plastic finite elements / D. V. Griffiths, R. M. Marquez // Geotechnique. — 2007. — Vol. 57 (6). — P. 537–546. https://doi.org/10.1680/geot.2007.57.6.537
3. Jing Xi Chen. Slope stability analysis by strength reduction elasto-plastic FEM / Jing Xi Chen, Peng Zhen Ke, Guang Zhang // Key Eng. Mater. — 2007. — Vol. 345. — P. 625–628. https://doi.org/10.4028/www.scientific.net/KEM.345-346.625
4. Михайлов, В. О. Трехмерная математическая модель обвальных процессов / В. О. Михайлов // Вестник Московского университета. Серия 5. География. — 2011. — № 4. — С. 53–58.
5. Yossef H. Hatzor. Discontinuous deformation analysis in rock mechanics practice / Yossef H. Hatzor, Guowei Ma, Gen-hua Shi // ISRM, CRC Press, 2018. — 410 p.
6. Морозов, Е. М. ANSYS в руках инженера. Механика разрушения / Е. М. Морозов, А. Ю. Муземнек, А. С. Шадский. — Москва : ЛЕНАНД, 2008. — 456 с.
7. Drucker, D. C. Soil Mechanics and plastic analysis or limit design / D.C. Drucker, W. Prager // Quarterly of Applied Mathematics. — 1952. — Vol. 10 (2). — P. 157−165.
8. Фадеев, А. Б. Метод конечных элементов в геомеханике / А. Б. Фадеев — Москва : Недра, 1987. — 221 с.
9. Гайджуров, П. П. Конечно-элементное моделирование передачи усилия натяжения стального каната на бетон / П. П. Гайджуров, Аль-Джабоби Сами Фахль, Аль-Хадж Махмуд Абдо Хаса // Известия вузов СевероКавказский регион. Технические науки. — 2017. — № 2. — С. 73–78.
10. Маций, С. И. Свайно-анкерные противооползневые конструкции / С. И. Маций, А. К. Рябухин. — Краснодар : КубГАУ, 2017. — 189 с.
Review
For citations:
Gaidzhurov Р.Р., Saveleva N.А., Dyachenkov V.А. Finite element modeling of the joint action of flow slide and protective structure. Advanced Engineering Research (Rostov-on-Don). 2021;21(2):133-142. https://doi.org/10.23947/2687-1653-2021-21-2-133-142