Technology and equipment for friction stir preweld edge preparation
https://doi.org/10.23947/2687-1653-2021-21-2-163-170
Abstract
Introduction. Friction stir welding is widely used due to certain advantages of this method. Factors that reduce the strength of joints made of high-strength aluminum alloys are considered. When welding flat sheets, an effective way to increase the strength of the weld is edge thickening. The paper proposes a method for such thickening. A device is developed, calculations and experiments are carried out.
Materials and Methods. Laboratory equipment has been developed to provide simultaneous thickening of two edges to be welded. The main component of this equipment is a steel roller, which is rolled along the edges of two blanks and thickens them due to plastic deformation. The same setup can be used for the friction stir welding process. To calculate the geometry of the thickened edges and the parameters of the deforming roller depending on the value of the edge settlement, a mathematical model based on the contact problem for elastic (roller) and elastoplastic (blank) bodies with a bilinear hardening law has been developed. A three-dimensional simplified geometric model of the facility with account of its symmetry has been constructed. On the contact surfaces, special contact finite elements were selected and the finite element mesh was refined. The numerical implementation of the model was carried out in the ANSYS package.
Results. The theoretical model provides assessing the stress-strain state of interacting elements. On the basis of the developed finite element model, the parameters of the thickened edges are calculated, and the geometry of the thickened edges is defined. Using the developed laboratory equipment, full-scale experiments on thickening the edges of the blanks were carried out. The experimental results confirm the adequacy of the developed theoretical model and calculations based on it. The possibility of adjusting the size of the thickened edges is shown.
Discussion and Conclusion. A technology for obtaining thickened edges in places of welds is proposed. It will reduce the metal consumption of structures and ensure the bearing capacity of welded joints not lower than similar characteristics of the base metal. A theoretical model of the process is developed, and a numerical experiment providing the selection of the process parameters is carried out.
About the Authors
Y. G. LyudmirskyRussian Federation
А. N. Soloviev
Russian Federation
М. V. Soltovets
Russian Federation
R. R. Kotlyshev
Russian Federation
I. V. Mironov
Russian Federation
А. V. Kramskoy
Russian Federation
References
1. Сварка трением с перемешиванием — плюсы и минусы / В. А. Фролов, А. Н. Иванюхин, А. Н. Сабанцев [и др.] // Сварочное производство. — 2008. — №10. — С. 12–19.
2. Pengfei Yu. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates / Yu. Pengfei, Wu. ChuanSong, Lei Shi // Acta Materialia. — 2021. — Vol. 207. — P. 116692. https://doi.org/10.1016/j.actamat.2021.116692
3. Defalco, J. Friction stir welding vs. fusion welding / J. Defalco // Welding J. — 2006. — Vol. 85 (3). — P. 42–44.
4. Okamura, H. Friction stir welding of aluminum alloy and application to structure / H. Okamura, K. Aota, M. Ezumi // J. of Jap. Institute of Light Metals. — 2000. — Vol. 50 (4). — P. 166–172. https://doi.org/10.2464/jilm.50.166
5. Лукьянов, В. Ф. Производство сварных конструкций (изготовление в заводских условиях) / В. Ф. Лукьянов, В. Я. Харченко, Ю. Г. Людмирский. — Ростов-на-Дону : Терра Принт, 2006. — 336 с.
6. Котлышев, Р. Р. Расчет температур при сварке трением с перемешиванием алюминиевых сплавов / Р. Р. Котлышев, Л. Г. Шучев, А. В. Крамской // Вестник Донского государственного технического универистета. — 2010. — Т. 10, №5 (48). — С. 693–699.
7. Котлышев, Р. Р. Сварка трением с перемешиванием / Р. Р. Котлышев: моногр. — Ростов-на-Дону : Издательский центр ДГТУ, 2012. — 135 с.
8. Покляцкий, А. Г. Сварка трением с перемешиванием –эффективный способ повышения эксплуатационных характеристик конструкций / А. Г. Покляцкий, А. Я. Ищенко, В. Е. Федорчук // Автоматическая сварка. — 2010. — № 4. — С. 45–50.
9. Virendra Pratap Singh. Mechanical and microstructural properties evolutions of various alloys welded through cooling assisted friction-stir welding: A review / Virendra Pratap Singh, Surendra Kumar Patel, Basil Kuriachen // Intermetallics. — 2021. — Vol. 133. — P. 107122. https://doi.org/10.1016/j.intermet.2021.107122
10. Mrinal Sahu. Optimization of process parameters of friction stir welded joints of marine grade AA 5083 / Mrinal Sahu, Atanu Paul, Subhas Ganguly // Materials Today: Proceedings. 2021. — Vol. 44(2). — P. 2957–2962. https://doi.org/10.1016/j.matpr.2021.01.938
11. Optimization of friction stir welding parameters during joining of AA3103 and AA7075 aluminium alloys using Taguchi method / Anil Raj, J. Pratap Kumar, Anil Melwin Rego [et al.] // Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.02.246
12. Effects of cryogenic and annealing treatment on microstructure and properties of friction stir welded TA15 joints / Xianglai Xu, Xueping Ren, Hongliang Hou, Xian Luo // Materials Science & Engineering A. — 2021. — Vol. 804. — P. 140750. https://doi.org/10.1016/j.msea.2021.140750
13. High-strength joint of nuclear-grade FeCrAl alloys achieved by friction stir welding and its strengthening mechanism / Yanying Hu, Yunqiang Zhao, Yongbing Peng [et al.] // Journal of Manufacturing Processes. — 2021. — Vol. 65. — P. 1–11. https://doi.org/10.1016/j.jmapro.2021.03.007
14. An investigation of the impact of axial force on friction stir-welded AA5086/AA6063 on microstructure and mechanical properties butt joints / R. Ramamoorthi, K. P. Yuvaraj, C. Gokul [et al.] // Materials Today: Proceedings. — 2021. — Vol. 37 (2). — P. 3159–3163. https://doi.org/10.1016/j.matpr.2020.09.050
15. Sucharitha, M. Experimental investigations on the effect of tool rotational speed on mechanical properties and microstructure of friction stir welded AZ31 Mg alloy / M. Sucharitha, B. Ravi Sankar, P. Umamaheswarrao // Materials Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2020.11.788
16. Kareem N. Salloomi. Coupled Eulerian-Lagrangian prediction of thermal and residual stress environments in dissimilar friction stir welding of aluminum alloys / Kareem N. Salloomi, Sanaa Al-Sumaidae // Journal of Advanced Joining Processes. — 2021. — Vol. 3. — P. 100052. https://doi.org/10.1016/j.jajp.2021.100052
Review
For citations:
Lyudmirsky Y.G., Soloviev А.N., Soltovets М.V., Kotlyshev R.R., Mironov I.V., Kramskoy А.V. Technology and equipment for friction stir preweld edge preparation. Advanced Engineering Research (Rostov-on-Don). 2021;21(2):163-170. https://doi.org/10.23947/2687-1653-2021-21-2-163-170