Modeling the elastic strain fields by point-source method
https://doi.org/10.12737/10372
Abstract
About the Authors
Sergey Yuryevich KnyazevRussian Federation
Victor Nikolayevich Pustovoyt
Russian Federation
Elena Evgenyevna Shcherbakova
Russian Federation
References
1. Pobedrya, B.Е. Chislennye metody v teorii uprugosti i plastichnosti. [Numerical methods in the theory of elasticity and plasticity.] 2nd ed. Moscow: Izdatel'stvo MGU, 1995, 366 p. (in Russian).
2. Alyamovskiy, А.А. Inzhenernyy analiz metodom konechnykh elementov. [Engineering finite element analysis.] Moscow: DMK Press, 2004, 426 p. (in Russian).
3. Gromadka II, T.V., Lai, Ch. Kompleksnyy metod granichnykh elementov. [The Complex Variable Boundary Element Method.] Moscow: Mir, 1990, 308 p. (in Russian).
4. Samarskiy, А.А. Teoriya raznostnykh skhem. [The difference scheme theory.] Moscow: Nauka, 1989, 616 p. (in Russian).
5. Aleksidze, М.А. Fundamental'nye funktsii v priblizhennykh resheniyakh granichnykh zadach. [Fundamental functions in the approximate solutions of boundary value problems.] Moscow: Nauka, 1991, 352 p. (in Russian).
6. Bakhvalov, Y.А., Knyazev, S.Y., Shcherbakov, A.A. Matematicheskoe modelirovanie fizicheskikh poley metodom tochechnykh istochnikov. [Mathematical modeling of physical fields by the point-source method.] Bulletin of the RAS. Physics, 2008, vol. 72, no. 9, pp. 1259–1261 (in Russian).
7. Knyazev, S.Y. Ustoychivost' i skhodimost' metoda tochechnykh istochnikov polya pri chislennom reshenii kraevykh zadach dlya uravneniya Laplasa. [Stability and convergence of the field point-source method in the numerical solution of boundary value problems for the Laplace equation.] Izvestiya vuzov. Elektromekhanika, 2010, no. 1, pp. 3–12 (in Russian).
8. Fairweather, G., Karageorghis, A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 1998, vol. 9, pp. 69–95.
9. Golberg, M.A., Chen, C.S. The method of fundamental solutions for potential problem numerical and mathematical aspects. Boundary Integral Methods. Numerical and Mathematical Aspects. WIT Press : Southampton, 1998, pp. 103–176 (Computational Mechanics Publications).
10. Chen, J.T., Chen, I.-L., Lee Y.-T. Eigensolutions of multiply connected membranes using the method of fundamental solutions. Engineering Analysis with Boundary Elements, 2005, vol. 29 (2), pp. 166–174.
11. Golberg, M. A. The method of fundamental solutions for Poisson’s equation. Engineering Analysis with Boundary Elements, 1995, vol. 16 (3), pp. 205–213.
12. Katsurada, M., Okamoto, H. The collocation points of the method of fundamental solutions for the potential problem. Computers & Mathematics with Applications, 1996, vol. 31, pp. 123–137.
13. Knyazev, S.Y., Shcherbakova, E.E. Reshenie granichnykh zadach matematicheskoy fiziki metodom tochechnykh istochnikov polya. [Solution to boundary value problems of mathematical physics by the field point-source method.] Izvestiya vuzov. Elektromekhanika, 2007, no. 3, pp. 11–15 (in Russian).
14. Knyazev, S.Y., Shcherbakova, E.E. Reshenie zadach teplo- i massoperenosa s pomoshch'yu metoda tochechnykh istochnikov polya. [Solving problems of heat and mass transfer by the field point-source method.] Izvestiya vuzov. Elektromekhanika, 2006, no. 4, pp. 43–47 (in Russian).
15. Landau, L.D., Livshits, E.M. Teoriya uprugosti. [Elasticity theory.] 5-th ed. Moscow: Fizmatlit, 2003, 264 p. (in Russian).
16. Poullikkas, A., Karageorghis, A., Georgiou, G. The method of fundamental solutions for Signorini problems. IMA Journal of Numerical Analysis,1998, vol. 18, pp. 273–285.
17. Raamachandran, J., Rajamohan, C. Analysis of composite plates using charge simulation method. Engineering Analysis with Boundary Elements, 1996, vol. 18, pp. 131–135.
18. Yan Gu, Wen Chen, Xiaoqiao He. Improved singular boundary method for elasticity problems. Computers & Structures, 2014, vol. 135, pp. 7–82.
19. Marin, L., Karageorghis, A. The MFS-MPS for two-dimensional steady-state thermoelasticity problems. Engineering Analysis with Boundary Elements, 2013, vol. 37, iss. 7–8, pp. 1004–1020.
20. Marin, L., Lesnic, D. The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity. International Journal of Solids and Structures, 2004, vol. 41, pp. 3425–3438.
21. Drombosky, T.-W., Meyer, A.-L., Ling, L. Applicability of the method of fundamental solutions. Engineering Analysis with Boundary Elements, 2009, vol. 33, pp. 637–643.
22. Smyrlis, Y.-S., Karageorghis, A. Some aspects of the method of fundamental solutions for certain harmonic problems. Journal of Scientific Computing, 2001, vol. 16 (3), pp. 341–371.
Review
For citations:
Knyazev S.Yu., Pustovoyt V.N., Shcherbakova E.E. Modeling the elastic strain fields by point-source method. Vestnik of Don State Technical University. 2015;15(1):29-38. (In Russ.) https://doi.org/10.12737/10372