Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

CONTACT PROBLEM ON TORSION OF TRANSVERSELY ISOTROPIC ELASTIC HALF-SPACE WITH INHOMOGENEOUS TRANSVERSELY ISOTROPIC COATING BY ROUND DIE

Abstract

An axisymmetric contact problem of the elasticity theory on the torsion of the transversely isotropic half-space with the inhomogeneous coating by the round die is considered. The problem solution is reduced to the integral equation solution using the integral transformations technique. The explicit expression of the kernel transform of the integral equation for the homogeneous transversely isotropic coating is constructed. The numerical construction scheme of the kernel transform in the case of the arbitrary law of variation of the coating depth shear modulus is suggested. The bilateral asymptotically exact approximate analytical problem solution is constructed using the kernel transform approximation by some special functions. A special case of variation of the shear moduli in the transversely isotropic coating that allows constructing an explicit closed problem solution is analyzed. The model problem on the biomaterial torsion is studied numerically. The coating is considered a cartilaginous tissue, and the substrate properties correspond to a cortical bone.

 

About the Authors

Andrey Sergeyevich Vasilyev
Don State Technical University. Russia
Russian Federation


Evgeny Valeryevich Sadyrin
Don State Technical University. Russia
Russian Federation


References

1. Reissner, E. Forced torsional oscillations of an elastic half-space / E. Reissner, H. F. Sagoci // Journal of Applied Physics. — 1944. — Vol. 15. — № 9. — Pp. 652—654.

2. Sneddon, I. N. The Reissner—Sagoci problem / I. N. Sneddon // Proceedings of the Glasgow Mathematical Association. — 1966. — Vol. 7. — № 3. — Pp. 136—144.

3. Грилицкий, Д. В. Кручение двухслойной упругой среды / Д. В. Грилицкий // Прикладная механика. — 1961. — Т. 7. — № 1. — С. 89—94.

4. Kassir, M. K. The Reissner—Sagoci problem for a non-homogeneous solid / M. K. Kassir // International Journal of Engineering Science. — 1970. — Vol. 8. — № 10. — Pp. 875—885.

5. Айзикович, С. М. Кручение круглым штампом неоднородного полупространства / С. М. Айзикович // Расчёт оболочек и пластин : сб. трудов. — Ростов-на-Дону : РИСИ, 1978. — С. 156—169.

6. Erguven, M. E. Torsion of a transversely isotropic elastic layer bonded to a transversely isotropic half-space / M. E. Erguven // International Journal of Engineering Science. — 1986. — Vol. 24. — № 9. — Pp. 1501—1509.

7. Liu, Tie-Jun. Reissner—Sagoci problem for functionally graded materials with arbitrary spatial variation of material properties / Tie-Jun Liu, Yue-Sheng Wang // Mechanics Research Communica¬tions. — 2009. — Vol. 36. — № 3. — Pp. 322—329.

8. Xiong, Su-ming. The Reissner—Sagoci problem for transversely isotropic piezoelectric half-space / Su-ming Xiong, Guang-zheng Ni, Peng-fei Hou // Journal of Zhejiang University SCIENCE A. — 2005. — Vol. 6. — № 9. — Pp. 986—989.

9. Бабешко, В. А. Методы построения матриц Грина для стратифицированного упругого полупространства / В. А. Бабешко, Е. В. Глушков, Н. В. Глушкова // Журнал вычислительной математики и математической физики. — 1987. — Т. 27. — № 1. — С. 93—101.

10. Айзикович, С. М. О свойствах функций податливости, соответствующих слоистому и непрерывно-неоднородному полупространству / С. М. Айзикович, В. М. Александров // Доклады академии наук СССР. — 1982. — Т. 266. — № 1. — С. 40—43.

11. Айзикович, С. М. Асимптотические решения контактных задач теории упругости для неоднородных по глубине сред / С. М. Айзикович // Прикладная математика и механика. — 1982. — Т. 46. — № 1. — С. 148—158.


Review

For citations:


Vasilyev A.S., Sadyrin E.V. CONTACT PROBLEM ON TORSION OF TRANSVERSELY ISOTROPIC ELASTIC HALF-SPACE WITH INHOMOGENEOUS TRANSVERSELY ISOTROPIC COATING BY ROUND DIE. Vestnik of Don State Technical University. 2013;13(1-2):25-34. (In Russ.)

Views: 382


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)