Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

DETERMINATION OF SURFACE DEFORMATION OF CONTINUOUSLY INHOMOGENEOUS THERMOELASTIC HALF-SPACE UNDER LOCAL HEATING

Abstract

The axially symmetric quasistatic problem on thermoelasticity for the functionally graded half-space, with elasticity modulus, Poisson ratio, heat conduction, and linear expansion coefficients varying continuously in the near-surface layer is considered. It is supposed that the area in the circle with the known radius is being heated by the heat source with time-constant temperature. Outside the circle, the surface is perfectly insulated. Analytic methods, particularly, Hankel integral transform, are used to solve the problem. At first, the solution is reduced to solving a two-point boundary problem for the ODEs system with varying coefficients of the sixth order. The modulating functions method is used to provide a stable numerical solution to the ordinary differential system. As a result, the solution to the mixed boundary problem is reduced to solving the dual integral equation. The kernel transform properties allow applying a well-established evolutionary bilateral asymptotical method. The heat flow approximation and the half-space surface displacement are determined through this method. The numerical results showing the curvature of the inhomogeneous half-space surface under the influence of the uniform temperature within the unit circle are given for various cases of the mechanical and temperature property changes in the near-surface layer. The following cases are considered: when the coating property value does not differ from the corresponding substrate property value, and when the coating value differs two times (to the higher or smaller side) on the surface, and linearly decreases (grows) in depth up to the property value in the substrate. It is shown that the ultimate effect on the maximum surface riser is caused by the oppositely directed changes in the thermal conductivity and linear expansion coefficients in the coating.

About the Authors

Leonid Ivanovich Krenev
Don State Technical University. Russia
Russian Federation


Sergey Mikhailovich Aizikovich
Don State Technical University. Russia
Russian Federation


Boris Igorevich Mitrin
Don State Technical University. Russia
Russian Federation


References

1. Новацкий, В. Теория упругости / В. Новацкий. — Mосква : Мир, 1975. — 863 с.

2. Коваленко, А. Д. Введение в термоупругость / А. Д. Коваленко. — Киев : Наукова думка, 1965. — 204 с.

3. Barber, J. R. Thermoelasticity and contact / J. R. Barber. // Journal of Thermal Stresses. — 1999. — Т. 22, № 4. — С. 513–525.

4. Карташов, Э. М. Аналитические методы в теории теплопроводности твёрдых тел / Э. М. Карташов. — Москва : Высшая школа, 2001. — 550 с.

5. Величко, И. Г. Аналитическое решение осесимметрической задачи термоупругости для многослойного основания [Электрон. ресурс] / И. Г. Величко, И. Г. Ткаченко // Вестник Восточноукр. национ. ун-та им. В. Даля. — 2009. — № 4Е. — Режим доступа : http://www.nbuv.gov.ua/e-journals/Vsunud/2009-4E/09vigdmo.htm.

6. Noda, N. On a general treatise of three-dimensional thermoelastic problems in transversely isotropic bodies / N. Noda, Y. Takeuti, Y. Sugano. // ZAMM Z. angew. Math. Mech. — 1985. — Т. 65, № 10. — С. 509–512.

7. Jin, Z. H. Transient thermal stress intensity factors for a crack in semi-infinite plate of a func-tionally gradient material / Z. H. Jin, N. Noda. // International Journal of Solids and Structures. — 1994. — Т. 31, вып. 2. — С. 203–218.

8. Liu, J. Thermoelastic contact analysis of functionally graded materials with properties varying exponentially / J. Liu, L. L. Ke, Y. S. Wang // Advanced Materials Research. — 2011. — Т. 189–193. — С. 988–992.

9. Краснюк, П. П. Плоская контактная задача взаимодействия жёсткого теплопроводного цилиндрического штампа и упругого слоя при нестационарном фрикционном тепловыделении / П. П. Краснюк. // Трение и износ. — 2009. — Т. 30, № 2. — С. 152–162.

10. Айзикович, С. М. Асимптотические решения контактных задач теории упругости для неоднородных по глубине сред / С. М. Айзикович // Прикладная математика и механика. — 1982. — Т. 46, № 1. — С. 148–158.

11. Айзикович, С. М. О свойствах функций податливости, соответствующих слоистому и непрерывно-неоднородному полупространству / С. М. Айзикович, В. М. Александров // Доклады АН СССР. — 1982. — Т. 266, № 1. — С. 40–43.

12. Айзикович, С. М. Осесимметрическая задача о вдавливании круглого штампа в упругое, неоднородное по глубине полупространство / С. М. Айзикович, В. М. Александров // Известия АН СССР, МТТ. — 1984. — Т. 39, № 2. — С. 73–82.

13. Айзикович, С. М. Асимптотическое решение одного класса парных уравнений / С. М. Айзикович // Прикладная математика и механика. — 1990. — Т. 54, № 5. — С. 872–877.


Review

For citations:


Krenev L.I., Aizikovich S.M., Mitrin B.I. DETERMINATION OF SURFACE DEFORMATION OF CONTINUOUSLY INHOMOGENEOUS THERMOELASTIC HALF-SPACE UNDER LOCAL HEATING. Vestnik of Don State Technical University. 2013;13(3-4):5-15. (In Russ.)

Views: 379


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)