Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Study on positioning accuracy of automated pneumatic drive with an outer brake

https://doi.org/10.12737/16077

Abstract

The work objective is to introduce a design of the automated pneumatic drive (APD) with an external braking gear. It is a controlled pneumo-mechanic brake providing the process time reduction, the positioning accuracy increase, and the reliable positioning of the stop mechanism in the setpoints. The application of the prototype drive with the automated measurement complex creates conditions for the oscillographic testing of the positioning process in real time and space, and it also provides reliable experiment results. The authors have created a special stand - a model of the proposed drive that allows investigating the effect of its positional accuracy under different parameters of its operation. Kinematic and power characteristics of the drive in the automatic operation by the compressed air flow are identified. The effect of the positioning speed and the brake control pressure on the drive accuracy is resulted. Recommendations for the development of real positional drives with increased performance and positioning accuracy are formulated. It is found that the introduction of an outer braking device - the controlled pneumo-mechanic brake - improves the positioning accuracy of these drives by 1,25-2,25 times.

About the Authors

The Anh Dao
Don State Technical University
Russian Federation


Valentin S. Sidorenko
Don State Technical University
Russian Federation


Denis D. Dymochkin
Don State Technical University
Russian Federation


References

1. Taghizadeh, M., Ghaffari, A., Najafi, F. Modeling and identification of a solenoid valve for PWM control applications. Comptes Rendus Mécanique at ScienceDirect.com. 2009, vol. 337, iss. 3, pp. 131–140.

2. Wang, J., Gordon, T. Energy Optimal Control of Servo-Pneumatic Cylinders through Nonlinear Static Feedback Linearization. Journal of Dynamic Systems, Measurement and Control, 2012, vol. 134, iss. 5, pp. 1–11.

3. Najjari, B., et al. Modelling and Controller Design of Electro-Pneumatic Actuator Based on PWM. International Journal of Robotics and Automation, 2012, vol. 1, no. 3, pp. 125–136.

4. Falcão Carneiro, J., Gomes de Almeida, F. A high-accuracy trajectory following controller for pneumatic devices. International Journal of Advanced Manufacturing Technology, 2012, vol. 61, iss. 1, pp. 253–267.

5. Camozzi. Bol'shoy katalog. Pnevmaticheskaya apparatura. Versiya 8.5. [Camozzi. Large catalogue. Pneumatic facilities. Version 8.5.] Camozzi spa. Moscow: Salta LTD, 2012, 1070 p. (in Russian).

6. Dao The Anh, Sidorenko, V.S., Dymochkin, D.D. Mnogoparametricheskiy pnevmomekhanicheskiy datchik pozitsionnykh pnevmoprivodov. [Multiparameter pneumo- mechanical sensor of positional pneumatic drives.] Inzhenernyy vestnik Dona, 2015, no. 2. Available at: http://ivdon.ru/ru/magazine/archive/n2p2y2015/3055 (accessed: 15.06.15) (in Russian).

7. Dao The Anh, Sidorenko, V.S. Modelirovanie protsessov pozitsionirovaniya bystrodeystvuyushchego pnevmoprivoda robota. [The study of the dynamical system high-speed pneumatic robot position.] Fundamental research, 2015, no. 7, part 2, pp. 285–292 (in Russian).

8. Dao The Anh, Sidorenko, V.S., Dymochkin, D.D. Dynamics of position fast robot with pneumatic drive of brake unit. Dynamics and Vibroacoustics of Machines: Proc. 2nd Int. Conf. Samara, September 15–17, 2014, vol. 3, pp. 176–183.

9. Johnson, N., Lion, F. Statistika i planirovanie eksperimenta v tekhnike i nauke. Metody planirovaniya eksperimenta. [Statistics and Experimental Design in Engineering and Science. Methods of Experimental Design.] Letskiy, E.K., Markova, E.V., eds. Moscow: Mir, 1981, 516 p. (in Russian).

10. Lvovskiy, E.N. Statisticheskie metody postroeniya empiricheskikh formul. [Statistical methods for constructing empirical formulas.] Moscow: Vysshaya shkola, 1988, pp. 239 (in Russian).


Review

For citations:


Dao T.A., Sidorenko V.S., Dymochkin D.D. Study on positioning accuracy of automated pneumatic drive with an outer brake. Vestnik of Don State Technical University. 2015;15(4):46-53. (In Russ.) https://doi.org/10.12737/16077

Views: 708


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)