Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Cutting-tool geometry effect on turning process dynamics

https://doi.org/10.23947/1992-5980-2018-18-2-201-213

Abstract

Introduction. Many scientists in their research aimed at investigating the cutting process dynamics, the cutting system stability and forming various attracting sets of deformational displacements, consider the machine an autonomous system. In contrast to these works, this paper describes the dynamic properties of the cutting process depending on the dynamic linking parameters under cutting, and on the properties of the subsystems interacting with cutting, taking into account the external disturbances effect. Many of these properties depend on the cutting-tool geometry, and thus the dynamic properties of the treatment process change when the tool geometric characteristics change. In particular, changes in the tool geometric parameters alter the stability of the forming movement trajectories, and their variations can cause bifurcations of the attracting sets of deformation displacements. The forming motion patterns determine both the geometric topology of the workpiece, and the tool wear rate, which depend on the tool geometry.

Materials and Methods. A mathematical model that characterizes the system dynamics disturbed by the spindle group wavering is presented. On its basis, a model that allows for digital experimental research is developed through the use of the software package Matlab.

Research Results. The mathematical simulation results and examples of changes in the system properties depending on the cutting-tool geometry are presented.

Discussion and Conclusions. The problem of matching the control (for example, from the CNC system) and the cutting process dynamics is discussed. One of the directions of this matching is connected with the selection of cutting-tool corners such as forming motion trajectories could remain steady under all variations of the process conditions.

About the Authors

V. L. Zakovorotny
Don State Technical University
Russian Federation

Zakovorotny, Vilor L., Dr.Sci. (Eng.), professor of the Production Automation Department 

344000, Rostov-on-Don, Gagarin Square, 1



V. E. Gvindzhiliya
Don State Technical University
Russian Federation

Gvindzhilya, Valeria E., Master of Sci. of the Production Automation Department 

344000, Rostov-on-Don, Gagarin Square, 1



V. S. Minakov
Don State Technical University
Russian Federation

Minakov, Valentin S. Dr.Sci. (Eng.), professor of the Production Automation Department 

344000, Rostov-on-Don, Gagarin Square, 1



References

1. Tlusty, I. Avtokolebaniya v metallorezhushchikh stankakh. [Self-excitation vibrations in cutting machines.] Transl. from Czech. Moscow: Mashgiz, 1956, 395 p. (in Russian).

2. Tlusty, J., Polacek, A., Danek, C. & Spacek, J. Selbsterregte SchwingungenanWerkzeugmaschinen. VEB Verlag Technik, Berlin, 1962.

3. Tlusty, J. Manufacturing Processes and Equipment. Prentice Hall, NJ, 2000.

4. Tobias, S. A. Machine Tool Vibrations. Blackie, London, 1965.

5. Kudinov, V.A. Dinamika stankov. [Machine dynamics.] Moscow: Mashinostroenie, 1967, 359 p. (in Russian).

6. Elyasberg, M.E. Avtokolebaniya metallorezhushchikh stankov: Teoriya i praktika. [Self-oscillation of metalcutting machine tools: Theory and practice.] St.Petersburg: OKBS, 1993, 182 p. (in Russian).

7. Veyts, V.L., Vasilkov, D.V. Zadachi dinamiki, modelirovaniya i obespecheniya kachestva pri mekhanicheskoy obrabotke malozhestkikh zagotovok. [Tasks of dynamics, modeling and quality assurance under machining of soft workpieces.] STIN, 1999, no. 6, pp. 9–13 (in Russian).

8. Stepan, G. Delay-differential equation models for machine tool chatter, in Nonlinear Dynamics of Material Processing and Manufacturing. Ed. Moon, F. C. John Wiley, NY, 1998, pp. 165–192.

9. Stepan, G., Insperge T. and Szalai, R. Delay, Parametric excitation, and the nonlinear dynamics of cutting processes. International Journal of Bifurcation and Chaos, 2005, vol. 15, no. 9, рр. 2783–2798.

10. Lapshin, V.P., Babenko, T.S., Khristoforova, V.V. Ob odnom chastnom sluchae sinteza sistem upravleniya protsessom obrabotki metallov tocheniem. [On a special case of synthesis of metal turning process control system.] Vestnik of DSTU, 2017, vol. 17, no. 1 (88), pp. 75–84 (in Russian).

11. Voronov, S.A., Nepochatov, A.V., Kiselev, I.A. Kriterii otsenki ustoychivosti protsessa frezerovaniya nezhestkikh detaley / [Criteria for assessing the stability of milling nonrigid parts.] Proceedings of Higher Educational Institutions. Маchine Building, 2011, no. 1, pp. 50–62 (in Russian).

12. Vasin, S.A., Vasin, L.A. Sinergeticheskiy podkhod k opisaniyu prirody vozniknoveniya i razvitiya avtokolebaniy pri tochenii. [Sinergetic approach to description of occurance and development nature of self-oscillations in turning.] Science Intensive Technologies in Mechanical Engineering, 2012, no. 1, pp. 11–16 (in Russian).

13. Borodkin, N.N., Vasin, S.A., Vasin, L.A. Predotvrashchenie protsessa vozniknoveniya i razvitiya avtokolebaniy pri tochenii reztsami so strukturirovannymi derzhavkami. [Prevention of the emergence and development of self-oscillations in turning cutters with structural holders.] Izvestiya TulGU, 2014, no. 11–1, pp. 234–243 (in Russian).

14. Voronov, S.A., Kiselev, I.A. Nelineynye zadachi dinamiki protsessov rezaniya. [Nonlinear problems of cutting process dynamics.] Mashinostroenie i inzhenernoe obrazovanie, 2017, no. 2 (51), pp. 9–23 (in Russian).

15. Zakovorotny, V.L., Gvindzhiliya, V.E. Vliyanie pogreshnosti dvizheniya ispolnitel'nykh elementov tokarnogo stanka na traektorii formoobrazuyushchikh dvizheniy. [Error effect of executive elements movement of the lathe tool on forming motion paths.] Vestnik of DSTU, 2017, no. 1(88), pp. 35–46 (in Russian).

16. Gouskov, A.M., Voronov, S.A., Paris, H. & Batzer, S A. Nonlinear dynamics of a machining system with two interdependent delays. Commun. Nonlin. Sci. Numer. Simul., 2002, n.o7, .p. 207–221.

17. Warminski, J., Litak, G., Cartmell, M.P., Khanin, R., Wiercigroch, M. Approximate analytical solutions for primary chatter in the non–linear metal cutting model. Journal of Sound and Vibration, 2003, no. 4, рр. 917–933.

18. Brzhozovsky. B.M., Brovkova, M.B., Yankin, I.N. Upravlenie dinamikoy rezaniya po strukture uprugogo vozmushcheniya. [Control of cutting dynamics along the structure of an elastic perturbation.] Stanki Instrument, 2018, no. 3, pp. 21–23 (in Russian).

19. Zakovorotny, V.L., Gvindzhiliya, V.E. Vliyanie bieniy shpindel'noy gruppy na geometricheskuyu topologiyu poverkhnosti detali pri tokarnoy obrabotke. [Effect of spindle group wavering on the geometric topology of the workpiece surface under turning.] Stanki Instrument, 2018, no. 4, pp. 35–40 (in Russian).

20. Zakovorotny, V.L., et al. Modelirovanie dinamicheskoy svyazi, formiruemoy protsessom tocheniya, v zadachakh dinamiki protsessa rezaniya (skorostnaya svyaz'). [Dynamic coupling modeling formed by turning in cutting dynamics problems (velocity coupling).] Vestnik of DSTU, 2011, vol. 1, no. 2 (53), pp. 137–146 (in Russian).

21. Zakovorotny, V.L., et al. Modelirovanie dinamicheskoy svyazi, formiruemoy protsessom tocheniya (pozitsionnaya svyaz'). [Dynamic coupling modeling formed by turning in cutting dynamics problems (positional coupling).] Vestnik of DSTU, 2011, vol. 11, no. 3 (54), pp. 301–311 (in Russian).

22. Remadna, M. and Rigal, J. Evolution during time of tool wear and cutting forces in the case of hard turning with CBN inserts. Journal of Materials Processing Technology, 2006, vol. 178, pp.67–75.

23. Brzhozovsky B.M., Martynov, V.V. Upravlenie sistemami i protsessami. [System and process control.] Saratov: Saratov St. Tech. Uni., 2008, pp. 137–142 (in Russian).

24. Lyapunov, A.M. Obshchaya zadacha ob ustoychivosti dvizheniya. [General problem on stability of motion.] Moscow: Gostekhizdat, 1950, 494 p. (in Russian).

25. Malikov, A.A., Vasin, L.A., Plakhatnikova, E.V. Vozniknovenie emerdzhentnogo effekta v protsesse struzhkoobrazovaniya pri tochenii reztsami, osnashchennymi rezhushchimi plastinami s sharikami na peredney poverkhnosti. [Origination of emergent effect in the process of chip formation under turning with cutters equipped with blade inserts with balls on the front face.] Stanki Instrument, 2018, no. 5, pp. 9–12 (in Russian).

26. Brzhozovsky B.M., Yankin I.N., Brovkova M.B. Controlling the oscillatory process composition in machining by correcting the exciting force structure in the cutting zone. Procedia Engineering 2. Ser. “2nd International Conference on Industrial Engineering, ICIE 2016”, pp. 241–246.

27. Zakovorotny, V.L, Bordachev, E.V. Informatsionnoe obespechenie sistemy dinamicheskoy diagnostiki iznosa rezhushchego instrumenta na primere tokarnoy obrabotki. [Information support of the dynamic diagnostic system for cutting tool wear by the example of lathing.] Journal of Machinery Manufacture and reliability, 1995, no. 3, pp. 95–103 (in Russian).


Review

For citations:


Zakovorotny V.L., Gvindzhiliya V.E., Minakov V.S. Cutting-tool geometry effect on turning process dynamics. Vestnik of Don State Technical University. 2018;18(2):201-213. (In Russ.) https://doi.org/10.23947/1992-5980-2018-18-2-201-213

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)