Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

MATHEMATICAL ANALYSIS OF NON-GAUSSIAN REGIME ORIGINATION IN NUMERICAL INTEGRATION OF ISOELECTROFOCUSING PROBLEM

Abstract

The mathematical analysis of the problem of so-called “non-Gaussian” regimes in the computational solution of the integro-differential isoelectric focusing (IEF) problem is done. Due to the problem analytic transformation, the development of the optimization algorithms and the numerical asymptotic testing, it is found that non-Gaussian regimes are the property of the original mathematical problem, and not the computational error accumulation consequence.

About the Author

Lyudmila V. Sakharova
Mathematics Department, Admiral Ushakov Maritime State Academy, Rostov-on-Don branch
Russian Federation


References

1. Righetti P.G. Isoelectric focusing: Theory, Methodology and Application. – Elsevier Biomedical Press. – New York-Oxford: Elsevier, 1983. – 386 p.

2. Mosher R.A., Thorman W. The condensation of ampholytes in steady state moving boundaries. Analysis by computer simulation // Electrophoresis. – 1985. – № 7. – P. 595–400.

3. Mosher R.A., Bier M., Righetti P.G. Computer simulation of immobilized pH gradients at acid and alkaline extremes: A quest for extended pH intervals // Electrophoresis. – 1985. – № 7. – P. 59–66.

4. Zilberstein G.V., Baskin E.M., Bukshpan Sh. Parallel processing in the isoelectric focusing chip // Electrophoresis. – 2003. – № 24. – P. 3735–3744.

5. Thormann W., Huang T., Pawliszyn J., Mosher R.A. High-resolution computer simulation of the dynamics of isoelectric focusing of proteins // Electrophoresis. – 2004. – № 25. – P. 324–337.

6. Thormann W., Mosher R. A. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: The post-separation stabilizing phase revisited // Electrophoresis. – 2002. – № 23. – P. 1803–1814.

7. Thormann W., Mosher R. A. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: Focusing with concurrent electrophoretic mobilization is an iso-tachophoretic process. Research Article // Electrophoresis. – 2006. – № 27. – P. 968–983.

8. Babskij V.G. Matematicheskaya teoriya e`lektroforeza: Primenenie k metodam frakcion-irovaniya biopolimerov / V.G. Babskij, M.Yu. Zhukov, V.I. Yudovich. – Kiev: Naukova dumka, 1983. – 202 s. – In Russian.

9. Zhukov M.Yu. Massoperenos e`lektricheskim polem / M.Yu. Zhukov. – Rostov n/D: Izd-vo Rost. gos. un-ta, 2005. – 216 s. – In Russian.

10. Sakharova L.V., Vladimirov V.A., Zhukov M.Yu. Anomalous pH-gradient in Ampholyte Solution [Electronic resource]. ArXiv:0902.3758vl [physics.chem-ph] 21 Feb 2009.


Review

For citations:


Sakharova L.V. MATHEMATICAL ANALYSIS OF NON-GAUSSIAN REGIME ORIGINATION IN NUMERICAL INTEGRATION OF ISOELECTROFOCUSING PROBLEM. Vestnik of Don State Technical University. 2012;12(4):5-15. (In Russ.)

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)