Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Stabilizers for functional copper nanomaterials for triboengineering

https://doi.org/10.12737/18268

Abstract

The formation of complexes of nitrogenated molecules with a small copper cluster Cun (n=1-7, 13) is systematically studied through the calculations by the density functional theory method. It is shown that the molecules of R1N=Y (Y=CR2R3, NR2, O) are promising for searching agents for copper clusters, as they are synthetically-available, can exert reducing properties, are firmly bound to the copper atoms, and do not distort the original cluster structure. Using any bulky substituent R, it is possible to block access to a large surface area of the cluster for aggressive compounds. Oxygen complexes on the surface of the copper cluster drastically fall short of the strength of the structures formed by molecules R1N=Y (Y=CR2R3, NR2, O). Depending on the cluster size, the interaction force varies in a sinusoidal manner from minimum to maximum.

About the Authors

Yu. S. Gerasina
Don State Technical University
Russian Federation


E. S. Kochergin
Voronezh State Pedagogical University
Russian Federation


Alexey A. Milov
Southern Scientific Center of the Russian Academy of Science
Russian Federation


Boris S. Lukyanov
Southern Federal Univercity
Russian Federation


References

1. Jug, K., Zimmermann, B., Calaminici, P., Köster, A.M. Structure and stability of small copper clusters. J. Chem. Phys., 2002, vol. 116, p. 4497.

2. Jug, K., Zimmermann, B., Köster, A.M Growth pattern and bonding of copper clusters. International Journal of Quantum Chemistry, 2002, vol. 90, no. 2, pp. 594–602.

3. Grundner, S., Markovits, M.A.C., Li, G., Tromp, M., et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2014, vol. 6, p. 7546.

4. Gusev, А.I. Nanomaterialy, nanostruktury, nanotekhnologii. [Nanomaterials, nanostructures, nanotechnologies.] Moscow: Fizmatlit, 2007, 414 p. (in Russian).

5. Pomogaylo, А.D., Rosenberg, A.S., Uflyand, I.E. Nanochastitsy metallov v polimerakh. [Metal nanoparticles in polymers.] Moscow: Khimiya, 2000, 672 p. (in Russian).

6. Gubin, S.P., Yurkov, G.Y., Kataeva, N.A. Nanochastitsy blagorodnykh metallov i materialy na ikh osnove. [Nanoparticles of noble metals and materials based on them.] Moscow: Azbuka–2000, 2006, 154 p. (in Russian).

7. Suzdalev, I.P. Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov. [Nanotechnology: physics and chemistry of nanoclusters, nanostructures, and nanomaterials.] Moscow: KomKniga, 2006, 592 p. (in Russian).

8. Melnikov, А.F. Effektivnost' primeneniya prisadok na osnove chastits tverdykh materialov pri prirabotke detaley dvigateley vnutrennego sgoraniya. [Efficiency the use of additives on the basis of particles solid materials during aging parts of internal-combustion engines.] Proc. Samara Sci. Center of RAS, 2011, vol. 13, no. 4(3), pp. 1116–1118 (in Russian).

9. Kuzharov, A.S., Kuzharov, A.А., Nguyen X., Shuchev, K.G., Ryzhkin, A.A. Molekulyarnye mekhanizmy samoorganizatsii pri trenii. Chast' VIII. Fiziko- khimicheskie i funktsional'nye svoystva nekotorykh remetallizantov sovremennogo rynka avtokhimii. [Molecular mechanisms of self-organization under friction. Part VIII. Physico-chemical and functional properties of some remetallisants of modern car chemicals market.] Journal of Friction and Wear, 2015, vol. 36, no. 1, pp. 62– 69 (in Russian).

10. Kuzharov, A.S., Kuzharov, A.А. Eshche raz i neskol'ko inache o metalloplakirovanii, fabo- i bezyznosnosti. [Again and a little bit differently about metal-cladding, “anf” and wearless.] Proc. Samara Sci. Center of RAS, 2011, vol. 13, no. 4 (3), pp. 772–775 (in Russian).

11. Solovyev, М.Е., Irzhak, V.I. Kvantovo-khimicheskoe modelirovanie formirovaniya nanochastits iz karboksilatov medi. [Quantum-chemical simulation of nanoparticles formation from copper carboxylates.] Colloid Journal, 2015, vol. 77, no. 3, 353–358 (in Russian).

12. Gerasina, Yu.S., Milov, A.A., Kuzharov, A.А. Kvantovo-khimicheskoe issledovanie vzaimodeystviya gidridov elementov V–VI grupp i ikh alkilproizvodnykh s atomami, ionami i malymi klasterami metallov gruppy Ib. [The quantum chemical study of hydrides of elements of V-VI groups and their alkyl derivatives with atoms, ions, and small clusters of metals of Ib group.] Vestnik SSC RAS, 2015, vol. 11, no. 2, pp. 23–29 (in Russian).

13. Hay, P.J., Wadt, W.R. Ab initio effective core potentials for molecular calculations - potentials for K to Au including the outermost core orbitals. J. Chem. Phys., 1985, vol. 82, pp. 299–310.

14. Perdew, J.P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

15. Perdew, J.P. Burke, K., Ernzerhof, M. Errata: Generalized gradient approximation made simple. Phys. Rev. Lett., 1997, vol. 78, pp. 1396–1399.

16. Frisch M. J., Trucks G. W., Schlegel, H. B., et al. Gaussian 09. Gaussian, Inc., Wallingford CT. 2013


Review

For citations:


Gerasina Yu.S., Kochergin E.S., Milov A.A., Lukyanov B.S. Stabilizers for functional copper nanomaterials for triboengineering. Vestnik of Don State Technical University. 2016;16(1):99-106. (In Russ.) https://doi.org/10.12737/18268

Views: 498


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)