Reconstruction of defects in elastic bodies by combination of genetic algorithm and finite element method
https://doi.org/10.12737/19686
Abstract
About the Authors
Arkady N SolovyevRussian Federation
Mikhail Y. Shevtsov
Russian Federation
References
1. Kurbatova, P. S., Saprunov, N.I., Solovyev, A.N. Ob ispol'zovanii neyronnykh setey v zadachakh opredeleniya defektov v uprugikh telakh. [On the use of neural networks in problems of determining defects in elastic bodies.] Sovremennye problemy mekhaniki sploshnoy sredy: materialy X mezhdunar. konf. [Current problems of continuum mechanics: Proc. X Int. Conf.] 2006, pp. 175–180 (in Russian).
2. Solovyev, A. N., Sobol, B.V., Krasnoshchekov, A.A. Identifikatsiya i issledovaniye kriticheskogo sostoyaniya poperechnoy treshchiny v polose s nakladkoy na osnove iskusstvennykh neyronnykh setey. [The Identification and Study of the Critical State of a Transverse Crack in a Zone with a Lap Based on Artificial Neural Networks.] Russian Journal of Nondestructive Testing, 2014, vol. 50, no. 8, pp. 23–35 (in Russian).
3. Solovyev, A. N. Rekonstruktsiya defekta na poverkhnosti trub s pomoshch'yu sochetaniya metoda konechnykh elementov i iskusstvennykh neyronnykh setey. [Reconstructing defect on the surface of pipes using the finite element method and artificial neural network.] Vestnik SSC RAS, 2014, vol. 10, no. 2, pp. 9–15 (in Russian).
4. Baranov, I. V., Vatulyan, A.O., Solovyev, A.N. Ob odnom geneticheskom algoritme i yego primenenii v obratnykh zadachakh identifikatsii uprugikh sred. [Genetic algorithm for solving the inverse identification problem for elastic media.] Computational Technologies, 2006, vol 11, no. 3, pp. 14–26 (in Russian).
5. Yongyong He, Dan Guo, Fulei Chu. Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system. Mathematics and Computers in Simulation, vol. 57, no. 1–2, pp. 95–108.
6. Mohammad-Taghi Vakil-Baghmisheh, Mansour Peimani, Morteza Homayoun Sadeghi, Mir Mohammad Ettefagh. Crack detection in beam-like structures using genetic algorithms. Applied Soft Computing, vol. 8, no. 2, pp. 1150–1160.
7. Fernando, S. Buezas, Marta B. Rosales, Carlos P. Filipich. Damage detection with genetic algorithms taking into account a crack contact model. Engineering Fracture Mechanics, vol. 78, no. 4, pp. 695–712.
8. Chatzi, Eleni N., Hiriyur, Badri, Waisman, Haim,. Smyth ,Andrew W. Experimental application and enhancement of the XFEM–GA algorithm for the detection of flaws in structures. Computers & Structures, vol. 89, no. 7–8, pp. 556–570.
9. Novatskiy, V. Teoriya uprugosti. [Theory of elasticity.] Moscow: Mir, 1975, 872 p. (in Russian)
10. Efficient genetic algorithms for professional purpose. СPAN. Available at: http : // search.cpan.org /~strzelec / AIGenetic-Pro-0.4 / lib / AI / Genetic / Pro.pm / (accessed: 06.02.2016).
11. Learning Perl. The Perl Programming Language. Available at: http://www.perl.org / (accessed: 06.02.2016).
Review
For citations:
Solovyev A.N., Shevtsov M.Y. Reconstruction of defects in elastic bodies by combination of genetic algorithm and finite element method. Vestnik of Don State Technical University. 2016;16(2):5-12. (In Russ.) https://doi.org/10.12737/19686