Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Interaction of punches on orthotropic half-space

https://doi.org/10.12737/20219

Abstract

An integral equation of the three-dimensional contact problem for an orthotropic half-space (9 independent elastic parameters in Hooke’s law) is obtained where its kernel does not include integrals, but it depends on the solution of a characteristic binary cubic. The interaction between two identical symmetrically embedded punches is considered for the case of the elliptic paraboloids. Galanov’s method of nonlinear boundary integral equations is used for solving the problem with an unknown contact domain that makes it possible to determine simultaneously the contact domain and the contact pressure. The exact solution to one elliptical punch is used for debugging the computer program. Contact pressures, contact zones and pressing forces are calculated for various orthotropic materials at the specified settlement, base forms of the punches, and relative distances between the punches. The orthotropic body model is applicable for describing lots of materials which are in-demand in the machinery and industry: sulfur, Rochelle salt, wolframite, barite, and various wood species.

About the Authors

Dmitry A. Pozharskiy
Don State Technical University
Russian Federation


Tatiana G. Yurushkina
Don State Technical University
Russian Federation


References

1. Lekhnitskiy, S.G. Teoriya uprugosti anizotropnogo tela. [Theory of anisotropic body elasticity.] Moscow: Nauka, 1977, 416 p. (in Russian).

2. Alexandrov, К.S., Prodayvoda, G.T. Anizotropiya uprugikh svoystv mineralov i gornykh porod. [Elastic anisotropy of minerals and formations.]. Moscow: SO RAN, 2000, 347 p. (in Russian).

3. Huntington, G. Uprugie postoyannye kristallov. [Elastic constants of crystals.] Physics – Uspekhi, 1961, vol. LXXIV, iss. 3, pp. 461–520 (in Russian).

4. Vatulyan, А.О. O deystvii zhestkogo shtampa na anizotropnoe poluprostranstvo. [On the action of rigid stamp on anisotropic half-space.] V sb.: Staticheskie i dinamicheskie smeshannye zadachi teorii uprugosti. Pod red. I. I. Vorovicha. [Vorovich, I.I., ed. Static and dynamic mixed problems of elasticity theory.] Rostov-on-Don: RSU Press, 1983, pp. 112–115 (in Russian).

5. Dаvtyan, D.B, Pozharskii, D.A. The action of a strip punch on a transversely isotropic half-space. Journal of Applied Mathematics and Mechanics, 2012, vol. 76, iss. 5, pp. 558–566.

6. Pozharskii, D.A. Contact problem for a transversely isotropic half-space with an unknown contact region. Doklady Physics, 2014, vol. 59, no. 3, pp. 144–147.

7. Galanov, B.A. The method of boundary equations of the Hammerstein-type for contact problems of the theory of elasticity when the regions of contact are not known. Journal of Applied Mathematics and Mechanics, 1985, vol. 49, iss. 5, pp. 634– 640.

8. Dаvtyan, D.B., Pozharskii, D.A. Action of an elliptic punch on a transversely isotropic half-space. Mechanics of Solids, 2014, vol. 49, no. 5, pp. 576–586.

9. Pozharskiy, D.A., Dаvtyan, D.B. Sravnenie tochnykh resheniy kontaktnykh zadach dlya transversal'no izotropnogo poluprostranstva. [Comparison of contact problem exact solutions for transversely isotropic half-space.] Vestnik of DSTU, 2015, no. 1, pp. 23–28 (in Russian).

10. Bedoidze, M.V., Pozharskii, D.A. The interaction of punches on a transversely isotropic half-space. Journal of Applied Mathematics and Mechanics, 2014, vol. 78, iss. 4, pp. 409–414.


Review

For citations:


Pozharskiy D.A., Yurushkina T.G. Interaction of punches on orthotropic half-space. Vestnik of Don State Technical University. 2016;16(3):5-9. (In Russ.) https://doi.org/10.12737/20219

Views: 536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)