Integral equation for numerical solution of stationary quantum-mechanical problems
https://doi.org/10.12737/20217
Abstract
References
1. Landau, L.D., Lifshitz, E.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya. [Quantum mechanics. Nonrelativistic theory.] Moscow: Nauka, 1963, 703 p. (in Russian).
2. Kesarwani, R.N., Varshni, Y.P. Eigenvalues of an anharmonic oscillators. J. Math. Phys., 1981, vol. 22, no.9, pp.1983–1989.
3. Ulyanov, V.V. Integral'nye metody v kvantovoy mekhanike. [Integral methods in quantum mechanics.] Kharkov: Vishcha shkola, 1982, 160 p. (in Russian).
4. Bender, С.М., Wu, Т.Т. Anharmonic oscillator. II. A study of perturbation theory in large order. Phys. Rev., 1973, vol. 7, no.6, pp. 1620–1636.
5. Killingbeck, J.P. Microcomputer Quantum Mechanics. Adam Hiller, 1983, 380 p.
6. Banerjee, К., Bhatnagar, S.P., Choudhry, V., Kanwal, S.S. The anharmonic oscillator. Proc. R. Soc. A, 1978, vol. 360, pp.575–586.
7. Cherkassky, V.A. Chislennoe reshenie uravneniya Shredingera: metod diagonalizatsii i spektral'nyy metod. [The numerical solution of the Schrödinger equation: diagonalization method and spectral method.] Вісник Харківського національного університету, 2010, no. 926, pp. 204–211 (in Russian).
8. Dineykhan, M., Efimov, G.V. The Schroedinger equation for bound state systems in the oscillator representation. Repots of Math. Phys., 1995, vol. 6, no.2/3, pp. 287– 308.
9. Abrashkevich, A.G., Abrashkevich, D.G., Kaschiev, M.S., Puzynin, I.V. FESSDE, a program for the finiteelement solution of the coupled-channel Schroedinger equation using high-order accuracy approximations. Соmр. Phys. Commun., 1995, vol. 85, pp. 65–74.
10. Jafarpour, М., Afshar, D. Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential. J. Phys. A: Math. Gen., 2002, vol. 35, pp. 87–92.
11. Kvitko, G.V., Kuzin, E.L., Shott, D.V. Chislennoe reshenie uravneniya Shredingera s polinomial'nymi potentsialami. [Numerical solution of the Schrödinger equation with polynomial potentials.] IKBFU’s Vestnik, 2011, vol. 5, pp. 115–119 (in Russian).
12. Lukyanenko, A.N., Chekanov, N.A. Simvol'no-chislennoe reshenie dvumernogo uravneniya Shredingera s dvukh''yamnym potentsialom. [Symbolic-numerical solution of two-dimensional Schrödinger equation with a double-well potential.] Universitet im. V.I. Vernadskogo, 2008, no. 3(13), vol. 2, pp.43–49 (in Russian).
13. Polyanin, A.D. Spravochnik po lineynym uravneniyam matematicheskoy fiziki. [Handbook on linear equations of mathematical physics.] Moscow: Fizmatlit, 2001, 576 p. (in Russian).
14. Vladimirov, V.S., Zharinov, V.V. Uravneniya matematicheskoy fiziki. [Equations of Mathematical Physics.] Moscow: Fizmatlit, 2004, 400 p. (in Russian).
15. Fairweather, G., Johnston, R.L. The method of fundamental solutions for problems in potential theory. C.T.H. Baker, G.F. Miller, eds. Treatment of Integral Equations by Numerical Methods. London: Academic Press, 1982, pp.349–359.
16. Knyazev, S.Yu. Chislennoe reshenie uravneniy Puassona i Gel'mgol'tsa s pomoshch'yu metoda tochechnykh istochnikov. [Numerical solution of Poisson and Helmholtz equations using the point-source method] Russian Electromechanics, 2007, no. 2, pp. 77–78 (in Russian).
17. Knyazev, S.Yu., Shcherbakova, E.E., Zaichenko, A.N. Chislennoe reshenie kraevykh zadach dlya neodnorodnykh uravneniy Gel'mgol'tsa metodom tochechnykh istochnikov polya. [Numerical Solution of the Boundary Problems with Non- Homogeneous Helmholtz Equation by Field Point-Source Method.] Russian Electromechanics, 2014, no. 4, pp. 14–19 (in Russian).
18. Knyazev, S.Yu., Shcherbakova, E.E. Reshenie zadach teplo- i massoperenosa s pomoshch'yu metoda tochechnykh istochnikov polya. [The solution of heat and mass transfer problems by the point source method.] University News. North- Caucasian region. Technical Sciences Series, 2006, no. 4, pp. 43—47 (in Russian).
19. Knyazev, S.Yu., Pustovoyt, V.N., Shcherbakova, E.E. Modelirovanie poley uprugikh deformatsiy s primeneniem metoda tochechnykh istochnikov. [Modeling the elastic strain fields by point-source method.] Vestnik of DSTU, 2015, vol. 15, no. 1(80), pp. 29–38 (in Russian).
20. Knyazev, S.Yu., Pustovoyt, V.N., Shcherbakova, E.E., Shcherbakov, A.A. Modelirovanie trekhmernykh poley uprugikh deformatsiy s pomoshch'yu metoda tochechnykh istochnikov. [Modeling of three-dimensional elastic strain fields by point-source method.] Vestnik of DSTU, 2015, vol. 15, no. 4(83), pp. 13–23 (in Russian).
Review
For citations:
Knyazev S.Yu. Integral equation for numerical solution of stationary quantum-mechanical problems. Vestnik of Don State Technical University. 2016;16(3):79-86. (In Russ.) https://doi.org/10.12737/20217