Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

MECHANICAL PROPERTIES OF SERVOVITE FILMS FORMED IN DURING FRICTION AQUEOUS SOLUTIONS OF CARBOXYLIC ACIDS

https://doi.org/10.23947/1992-5980-2018-18-3-280-288

Abstract

Introduction. The effect of the organic component nature in the systematic series of monocarboxylic acids on the tribological characteristics of the brass-steel friction pair in aqueous solutions is described. Dependence of the mechanical-and-physical properties of the antifriction films formed during friction on the nature of the lubricating composition is investigated. The work objectives are to study the applicability of carboxylic acids as an antifriction lubricant component; to assess their effect on the mechanical properties of the servovite film formed under the brass – steel friction.

Materials and Methods. Tribological studies of the brass-steel friction pair on the AE-5 end-type friction machine are carried out. Roughness parameters of the servovite  film were determined through the optical profilometry. The microgeometry and the object structure at the nanoscale were considered using atomic force microscopy. The mechanical characteristics of the antifriction film were investigated using the instrument nanoindentation.

Research Results. Tribological characteristics of the brass-steel tribocoupling and mechanical-and-physical properties of the servovite film formed during friction in the “brass – aqueous solution of carboxylic acid – steel” system were studied. It is established that the friction factor reduces when increasing the hydrocarbon radical length. The dimensional effects are found in the mechanical and tribological properties of the servovite film formed on the surface of the friction interaction in the carboxylic acids.

Discussion and Conclusions. The study results show that the friction interaction on the wearing surface in the aqueous solutions of carboxylic acids forms a nanostructured servovite film which drops the friction factor. Its mechanical, physical and tribological parameters depend on the composition of the model lubricating medium. It is determined that the local mechanical-and-physical properties depend on the method of producing the servovite layer, the load and the size of the deformation zone. The results obtained can be used in the development of lubricants.

About the Authors

V. E. Burlakova
Don State Technical University
Russian Federation

Burlakova, Victoria E. - Head of the Chemistry Department, Dr.Sci. , professor.

1, Gagarin Square, Rostov-on-Don, 344000.



E. G. Drogan
Don State Technical University
Russian Federation

Drogan, Ekaterina G. - teaching assistant of the Chemistry Department.

1, Gagarin Square, Rostov-on-Don, 344000.


A. I. Tyurin
Research Institute of Nanotechnologies and Nanomaterials, G.R. Derzhavin Tambov State University
Russian Federation

Tyurin, Alexander I. - Associate director for Research, Cand.Sci. (Phys.-Math.), associate professor.

33, Ul. Internatsionalnaya, Tambov, 392000.


T. S. Pirozhkova
Research Institute of Nanotechnologies and Nanomaterials, G.R. Derzhavin Tambov State University
Russian Federation

Pirozhkova, Tatyana S. - engineer.

33, Ul. Internatsionalnaya, Tambov, 392000.


References

1. Duvefelt, K. Model for contact between finger and sinusoidal plane to evaluate adhesion and deformation component of friction / K. Duvefelt, U. Olofsson, C.-M. Johannesson // Tribology International. — 2016. — Vol. 96. — P. 389–394. DOI: https://doi.org/10.1016/j.triboint.2014.12.020

2. Jen, T.-C. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement / T.-C. Jen, D.-J. Nemecek // International Journal of Heat and Mass Transfer. — 2008. — Vol. 51, № 7/8. — P. 1757–1769. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.009

3. Ost, W. The tribological behaviour of paper friction plates for wet clutch application investigated on SAEII and pin-on-disk test rigs / W. Ost, P. De Baets, J. Degrieck // Wear. — 2001. — Vol. 249. — P. 361–371.

4. Copper (II) oxide nanoparticles as additive in engine oil to increase the durability of piston-liner contact / M. Asnida [et al.] // Fuel. — 2018. — Vol. 212. — P. 656–667. DOI: https://doi.org/10.1016/j.fuel.2017.10.002

5. Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles / F.-L.-G. Borda [et al.] // Tribology International. — 2018. — Vol. 117. — P. 52–58. DOI: https://doi.org/10.1016/j.triboint.2017.08.012

6. Safonov, V. V. Evaluation of the antiwear properties of transmission oil with nanoscale powder additives / V. V. Safonov, V. V. Venskaitis, A. S. Azarov // Surface Engineering and Applied Electrochemistry. — 2017. — Vol. 53, № 4. — P. 311–321. DOI: https://doi.org/10.3103/S1068375517040135 .

7. Бурлакова, В. Э. Влияние наноразмерных кластеров меди на триботехнические свойства пары трения «сталь — сталь» в водных растворах спиртов / В. Э. Бурлакова, Ю. П. Косогова, Е. Г. Дроган // Вестник Дон. гос. техн. ун-та. — 2015. — Т. 15, №. 2 (81). — С. 41–47. DOI: https://doi.org/10.12737/11590

8. Кужаров, А. С. Концепция безызносности в современной трибологии / А. С. Кужаров // Изв. высш. учебных заведений. Сев.-Кавказский регион. Технические науки — 2014. — № 2 (177). — С. 23–31.

9. Metallic materials — Instrumented indentation test for hardness and materials parameters : ISO 14577-4 (2007) / International Organization for Standardization. — Geneva : ISO, 2007. — 11 p.

10. Oliver, W.-C. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology / W.-C. Oliver, G.-M. Pharr // Journal of materials research. — 2004. — Vol. 19, № 1. — P. 3–20. DOI: https://doi.org/1557/jmr.2004.19.1.3

11. Тюрин, А. И. Исследование процессов деформирования при формировании отпечатка и трения в микро- и наношкале / А. И. Тюрин, Т. С. Пирожкова, И. А. Шуварин // Изв. высш. учебных заведений. Физика. — 2016. — Т. 59 (7). — С. 243–247.

12. Effect of silicate doping on the structure and mechanical properties of thin nanostructured RF magnetron sputter-deposited hydroxyapatite films / M. A. Surmeneva [et al.] // Surface and Coatings Technology. — 2015. — Vol. 275. — P. 176–184. DOI: https://doi.org/10.1016/j.surfcoat.2015.05.021

13. Enhancement of the mechanical properties of az31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering / M. A. Surmeneva [et al.] // Journal of the Mechanical Behavior of Biomedical Materials. — 2015. — Vol. 46. — P. 127–136. DOI: https://doi.org/10.1016/j.jmbbm.2015.02.025

14. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films / A. A. Ivanova [et al.] // Applied Surface Science. — 2016. — Vol. 360. — P. 929–935. DOI: https://doi.org/10.1016/j.apsusc.2015.11.087

15. Protective radiolucent aluminium oxide coatings for beryllium x-ray optics / O. Yurkevich [et al.] // Journal of Synchrotron Radiation. — 2017. — Vol. 24, № 4. — P. 775–780. DOI: https://doi.org/10.1107/S1600577517007925

16. Исследование кинетики и механизмов деформирования, трения и износа однородных и неоднородных твердых тел в наношкале методами динамического микро- и наноиндентирования / А. И. Тюрин [и др.] // Деформирование и разрушение структурно неоднородных сред и конструкций : мат-лы III всерос. конф., посвященной 100-летию со дня рождения академика Ю. Н. Работнова. — Новосибирск : Ин-т гидродинамики им. М. А. Лаврентьева, 2014. — С. 108–110.

17. Тюрин, А. И. Исследование процессов трения и износа твердых тел в микро- и наношкале / А. И. Тюрин, Т. С. Пирожкова // Вестник Тамбовского университета. Естественные и технические науки. — 2016. — Т. 21, № 3. — С. 1375–1380. DOI: https://doi.org/10.20310/1810-0198-2016-21-3-1375-1380

18. The mechanism of the initial stage of selective transfer during frictional contact / I. V. Kragelskii [et al.] // Wear. — 1978. — Vol. 47, № 1. — P. 133–138. DOI: https://doi.org/10.1016/0043-1648(78)90209-0

19. Беликова, М. А. Электрохимические свойства поверхности трения при самоорганизации в условиях избирательного переноса : автореф. дис. ... канд. техн. наук / М. А. Беликова. — Ростов-на-Дону, 2007. — 19 с.

20. Влияние природы органической компоненты на триботехнические свойства системы «бронза — водный раствор карбоновой кислоты — сталь» / В. Э. Бурлакова [и др.] // Вестник Дон. гос. техн. ун-та. — 2015. — Т. 15, № 4 (83). — С. 63–68. DOI: https://doi.org/10.12737/16067

21. Нанотрибология водных растворов карбоновых кислот при трении бронзы по стали / А. С. Кужаров [и др.] // Инновации, экология и ресурсосберегающие технологии : мат-лы XI междунар. науч.- техн. форума. — 2014. — С. 712–717.

22. Дроган, Е. Г. Исследование топографии поверхности и механических свойств сервовитной пленки / Е. Г. Дроган // Перспективы развития фундаментальных наук : сб. науч. тр. XIII междунар. конф. студентов, аспирантов и молодых ученых. — 2016. — С. 148–150.

23. Jiang, J., The effect of substrate surface roughness on the wear of DLC coatings / J. Jiang, R.- D. Arnell // Wear. — 2000. — Vol. 239, № 1. — P. 1–9. DOI: https://doi.org/10.1016/S0043-1648(99)00351-8

24. Dayson, C. The friction of very thin solid film lubricants on surfaces of finite roughness / C. Dayson // ASLE transactions. — 1971. — Vol. 14, № 2. — P. 105–115. DOI: https://doi.org/10.1080/05698197108983232

25. Андриевский, Р. А. Прочность наноструктур / Р. А. Андриевский, А. М. Глезер // Успехи физических наук. — 2009. — Т. 179. — С. 337–358.

26. Koch, C.-C. Nanostructured materials: processing, properties and applications / C.-C. Koch. — Norwich : William Andrew, 2006. — 784 p.

27. Glezer, A. M. Crack resistance and plasticity of amorphous alloys under microindentation / A. M. Glezer, I. E. Permyakova, V. A. Fedorov // Bulletin of the Russian Academy of Sciences: Physics. — 2006. — Vol. 70, № 9. — P. 1599–1603.

28. Malygin, G. A. Plasticity and strength of micro- and nanocrystalline materials / G. A. Malygin // Physics of the Solid State. — 2007. — Vol. 49, № 6. — P. 1013–1033. . DOI: https://doi.org/10.1134/S1063783407060017

29. Валиев, Р. З. Объемные наноструктурные металлические материалы / Р. З. Валиев, И. В. Александров. — Москва : Академкнига, 2007. — 398 с.

30. Головин, Ю. И. Введение в нанотехнику / Ю. И. Головин. — Москва : Машиностроение, 2008. — 496 с.

31. Nanostructuring of surface layers and production of nanostructured coatings as an effective method of strengthening modern structural and tool materials / V. E. Panin [et al.] // The Physics of Metals and Metallography. —2007. — Vol. 104, № 6. — P. 627–636. DOI: https://doi.org/10.1134/S0031918X07120113

32. Andrievski, R. A. Strength of nanostructures / R. A. Andrievski, A. M. Glezer // Physics-Uspekhi. — 2009. — Vol. 52, № 4. — P. 315–334. DOI: https://doi.org/10.3367/UFNe.0179.200904a.0337

33. Дуб, С. Н. Испытания твердых тел на нанотвердость / С. Н. Дуб, Н. В. Новиков // Сверхтвердые материалы. — 2004. — № 6. — С. 16–33.

34. Vakulenko, K. Effect of the state of surface layer on 40Х steel fatigue characteristics / K. Vakulenko, I. Kazak, V. Matsevityi // Eastern-European Journal of Enterprise Technologies. — 2016. — Vol. 3, № 5. — P. 18–24.

35. Stoyanov, P. Scaling effects on materials tribology: from macro to micro scale / P. Stoyanov, R.- R. Chromik // Materials. — 2017. — Vol. 10, № 5. — P. 550. DOI: https://doi.org/10.3390/ma10050550

36. Current trends in the physics of nanoscale friction / N. Manini [et al.] // Advances in Physics: X. — 2017. — Vol. 2, № 3. — P. 569–590. DOI: https://doi.org/10.1080/23746149.2017.1330123


Review

For citations:


Burlakova V.E., Drogan E.G., Tyurin A.I., Pirozhkova T.S. MECHANICAL PROPERTIES OF SERVOVITE FILMS FORMED IN DURING FRICTION AQUEOUS SOLUTIONS OF CARBOXYLIC ACIDS. Vestnik of Don State Technical University. 2018;18(3):280-288. https://doi.org/10.23947/1992-5980-2018-18-3-280-288

Views: 658


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)