Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Production machines maintenance based on digitalization

https://doi.org/10.23947/1992-5980-2019-19-1-74-80

Abstract

Introduction. Digital data and analytics transform the role of the production equipment maintenance. Analytical information of sensors placed on the product allows continuous monitoring of the production machines operation and their timely servicing. Thus, defects in technical equipment are identified, the analysis of which enables to develop algorithms for monitoring and forecasting, and to prevent equipment from overshooting the limits of the safe operation.

Materials and Methods. Basic digitalization principles and the digital images structure are presented. A mathematical method is used to describe the digital image vector and the control system algorithm.

Research Results. The achievements of the known systems of maintenance and digitalization of various machines are summarized. The application of a dynamic digital image made it possible to determine the desired levels of the production facilities maintenance. An optional version of monitoring the equipment state within the framework of the production digitalization concept is shown. It is based on the proposed algorithm for an autonomous control of the process state.

Discussion and Conclusions. The construction of machine digital images in accordance with the main stages of its life cycle is described. The task of automated maintenance of machine tools based on digitalization is considered.

About the Authors

A. K. Tugengold
Don State Technical University, Rostov-on-Don
Russian Federation

Tugengold, Andrey K., professor of the Robotics and Mechatronics Department, Dr.Sci. (Eng.), professor,

1, Gagarin sq., Rostovon-Don, 344000



R. N. Voloshin
Don State Technical University, Rostov-on-Don
Russian Federation

Voloshin, Roman N., postgraduate student of the Robotics and Mechatronics Department,

1, Gagarin sq., Rostov-on-Don, 344000



A. R. Yusupov
Don State Technical University, Rostov-on-Don
Russian Federation

Yususpov, Alexander R., graduate student of the Robotics and Mechatronics Department,

1, Gagarin sq., Rostov-on-Don, 344000



T. N. Kruglova
Platov South-Russian State Polytechnic University (NPI), Novocherkassk
Russian Federation

Kruglova, Natalya P., postdoctoral student of the Automation and Robotization of Agroindustrial Complex and Biosystems Engineering Department,

132, ul. Prosveshcheniya, Novocherkassk, Rostov Region, 346428



References

1. Шваб, К. Четвертая промышленная революция / К. Шваб. — Москва : Эксмо, 2016. — 138 с. — (Top Business Awards).

2. Тугенгольд, А. К. Система знаний в виде интеллектуальной электронной технической документации для многооперационных станков / А. К. Тугенгольд, А. Ф. Лысенко, Д. А. Статовой // Вестник машиностроения. — 2015. — № 11. — С. 14–17.

3. Kemerait, R. C. New cepstral approach for prognostic maintenance of cycle machinery / R. C. Kemerait // Proceedings of the IEEE Southeast Conference in Tampa. — 1987. — P. 256–262.

4. Fisher, C. Multi-sensor condition monitoring systems for gas turbines / C. Fisher, N. C. Baines // Journal of Condition Monitoring. — 1988. — № 1. — P. 57–68.

5. Тугенгольд, А. К. Мониторинг состояния многооперационных станков на базе концепции eMindMachine / А. К. Тугенгольд, Р. Н. Волошин, С. В. Ющенко // Вестник Донского гос. техн. ун-та. — 2016. — Т. 16, № 1 (84). — С. 77–86.

6. Тугенгольд, А. К. Гибкий мониторинг мехатронных технологических машин / А. К. Тугенгольд, Р. Н. Волошин // Вестник Донского гос. техн. ун-та. — 2016. — № 4. — С. 51–58.

7. Shaft coupling model-based prognostics enhanced by vibration diagnostics / C. S. Byington [et al.] // Insight. — 2009. — Vol. 51. — P. 420–425. — (Non-Destructive Testing and Condition Monitoring).

8. Tan, C. K. A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears / C. K. Tan, P. Irving, D. Mba // Mechanical Systems and Signal Processing. — 2007. — № 21. — P. 208–233.

9. Мониторинг состояния станков и станочных систем / А. К. Тугенгольд [и др.] // СТИН. — 2017. — № 3. — С. 11–17.

10. Monitoring and Control of Tools in Multifunctional Machine Tools / A. K. Tugengol’d [et al.] // Russian Engineering Research. — 2017. — Vol. 37, № 5. — P. 440–446.

11. Monitoring of Machine Tools / A. K. Tugengol’d [et al.] // Russian Engineering Research. — 2017. — Vol. 37, № 8. — P. 440–446.

12. Тугенгольд, А. К. Принципы концептуального подхода к созданию подсистемы «ИНСТРУМЕНТ» в смарт-паспорте многооперационного станка / А. К. Тугенгольд, А. И. Изюмов // Вестник Донского гос. техн. ун-та. — 2014. — Т. 14, № 2. — С. 74–83.

13. Тугенгольд, А. К. Smart-Passport открытой мехатронной технологической системы. Контент / А. К. Тугенгольд. — Saarbrucken : Lambert Academic Publishing, 2013. — 83 c.

14. Цифровой двойник (Digital Twin) [Электронный ресурс] / КАДФЕМ Си-Ай-Эс. — Режим доступа: https://www.cadfem-cis.ru/products/ansys/systems/digital-twin/ (дата обращения: 01.02.18.).

15. Управление техническим состоянием станков / А. К. Тугенгольд [и др.] // СТИН. — 2018. — № 7. — С. 8–15.

16. Тугенгольд, А. К. Smart-паспорт мехатронного технологического объекта. Концепт / А. К. Тугенгольд, А. А. Бердичевский // Вестник Донского гос. техн. ун-та. — 2012. — № 7. — С. 33–41.


Review

For citations:


Tugengold A.K., Voloshin R.N., Yusupov A.R., Kruglova T.N. Production machines maintenance based on digitalization. Vestnik of Don State Technical University. 2019;19(1):74-80. https://doi.org/10.23947/1992-5980-2019-19-1-74-80

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)