Influence of wave effect on fiber stress limit under tensile tests of composite material
https://doi.org/10.23947/1992-5980-2019-19-4-310-316
Abstract
Introduction. The response of composite materials to the impact of a certain kind of load is difficult to predict, therefore, research in this area has often been neglected. The work objective was to study the influence of the wave effect on the tensile strength of polymer composites of a fibrous structure.
Materials and Methods. In the tests, samples of multilayer materials of various thicknesses with continuous, long and short fibers that form a fabric, as well as a layered structure, were used. The number of layers corresponds to the resistance to the applied loads. Fibers of glass, carbon, kevlar, or their combinations were used. Isotropic materials – epoxide, polyester and vinyl ether – were used as binders.
Research Results. The tensile test results of homogeneous samples and samples of fibrous structure are obtained. In this case, the values of fiber angle varied. The stability of their intercomparison test results is established. The dependence of the maximum tensile stresses σmax, MPa, (on the vertical axis) on the fiber angle θmax is obtained. These stresses for a fibreless material amounted to 250 MPa. Normal and tangential stresses acting perpendicular to the fibers, as well as shear stresses of the layered material, are calculated. As follows from the analysis of the dependences for the significant tensile stresses and from the study on refraction in the section of the sample damage, it was established that the shear stress τху was the cause of the fracture. Using an equation providing the compensation for the angle of inclination θ = 45, it was determined that the shear stress of the polyester is τху = 35 MPa. This was the stress that caused subsequently the destruction of the samples.
Discussion and Conclusions. The tensile stresses of the composite material decrease with increasing the fiber angle in certain areas. The destruction of all fiber samples occurred when the shear stress reached a value approximately equal to the shear stress at which the destruction of samples made only from a binder material happened. When the specimen broke, the fracture mode had the form similar to the shear failure; besides, at the moment of fracture, the object having a rectangular shape, being deformed at an angle, took the form of a parallelogram.
About the Authors
I. R. AntypasRussian Federation
Amer Karnoub
Switzerland
A. G. Dyachenkо
Russian Federation
References
1. Bacarreza, O. Woven Composites/ O. Bacarreza, P. Wen, and M.H. Aliabadi, in: M. H. Aliabadi (ed.) // Computational and Experimental Methods in Structures. — 2015. — Vol. 6, Ch. 1. — P. 1–74.
2. Sendeckyj, G.P. Effects of Defects in Composite Structures. In: A.K. Noor, M.J. Shuart, J.H. Strarnes Jr., J.G. Williams, eds. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures. NASA Conf. Pub., 1983, vol. 2278, pp. 305-312.
3. Textile composites and inflatable structures /E. Oñate, B.-H. Kröplin (Eds.). — 2005. — Vol. 3. — P. 322
4. Potter, K. Variability, Fibre Waviness and Misalignment in the Determination of the Properties of composite Materials and Structures / K. Potter, B. Khan, M.Wisnom, T.Bell, J. Stevens // Composites Part A. — 2008. — Vol. 39. — P. 1343–1354.
5. Kharmanda, G. Integration of reliability and optimization concepts into composite yarns / G. Kharmanda, I. R. Antypas // Состояние и перспективы развития сельскохозяйственного машиностроения : сб. статей 10-й Междунар. юбилейной науч.-практ. конф. в рамках 20-й Междунар. агропромышленной выставки «Интерагромаш-2017». ― Ростов-на Дону, 2017. ― С. 174–176.
6. Isa, M.T. Effect of fiber type and combinations on the mechanical / M. T. Isa, A. S. Ahmed, B. O. Aderemi, R. M. Taib, and I. A. Mohammed-dabo // Physical and thermal stability properties of polyester hybrid composites. — 2013. — Part B. — No. 52, — P. 217–223.
7. Ronald F. Gibson. Principles of Composite Material Mechanics/ Ronald F. Gibson // International Editions. — 1994. — McGraw-Hill Inc. — P. 7.
8. Антибас, И. Р. Сравнение амортизирующих свойств гофрированной картонной упаковки разной структуры при действии вертикальной нагрузки / И. Р. Антибас, С. А. Партко // Состояние и перспективы развития сельскохозяйственного машиностроения : сб. статей 8-й междунар. науч.-практ. конф. в рамках 18-й междунар. агропромышленной выставки «Интерагромаш-2015». ― Ростов-на Дону, 2015. ― С. 232–235.
9. Антибас, И. Р Определение характеристик компонентов композитных материалов, предназначенных для производства деталей сельскохозяйственной техники / И. Р. Антибас, А. Г. Дьяченко // Вестник Донского гос. техн. ун-та. ― 2017. ― Т. 17, № 3(90). ― С. 60–69.
10. Антибас, И. Р Влияние содержания древесного дисперсного наполнителя на долговечность композиционных материалов / И. Р. Антибас, А. Г. Дьяченко // Вестник Донского. гос. техн. ун-та. ― 2017. ― Т. 17, № 1(88). ― С. 67–74.
11. Karami, G. Finite Element Micromechanics for Stiffness and Strength of Wavy Fibre Composites / G. Karami, M. Garnich // Journal of Composite Materials. — 2004. — Vol. 38. — P. 273–292.
12. Chan, W.S. Influence of Fibre Waviness on the Structural Response off Composite Laminates / W.S. Chan, J.S. Wang // Journal of Thermoplastic Composite materials. — 1994. — Vol. 7. — P. 243–369.
13. Travis, A. Influence of Ply Waviness on the Stiffness and Strength Reduction on Composite Laminates / A. Travis, I. Bogett, W. John Jr., A. Gillespie // Journal of Thermoplastic Composite Materials. — 1992. — Vol. 5. — P. 344.
14. Garnich, Mark R. Localized Fibre Waviness and Implications for Failure in Unidirectional Composites / Mark R. Garnich and Ghodrat Karami // Journal of composite Materials. — 2005. — Vol. 39. — P. 1225–1245.
Review
For citations:
Antypas I.R., Karnoub A., Dyachenkо A.G. Influence of wave effect on fiber stress limit under tensile tests of composite material. Vestnik of Don State Technical University. 2019;19(4):310-316. https://doi.org/10.23947/1992-5980-2019-19-4-310-316