Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Analysis of the initial stage of fatigue wear in heterostructure materials under contact cyclic loading

https://doi.org/10.23947/1992-5980-2019-19-4-328-334

Abstract

Introduction. The process of formation of fatigue defects in metal alloys with different structural morphology is considered. The work objective is to develop a computational tool for determining the moment of the defect nucleation under cyclic loading.

Materials and Methods. A physical model is built, calculation expressions are presented. The physical model is based on the theory of dislocations. It is shown that a structure factor is particularly important in the process of fracture nucleus origination under dynamic cyclic loading. Depending on the structure and properties of the material, as well as on the nature of the loads, the critical fatigue defect develops in the form of cracks, pores or micro-crater wear.

Research Results. A numerical experiment was performed to determine the moment of nucleation of the critical-size defect in iron-base alloys under the drop hypervelocity impacts. Comparative data of calculations and bench tests for droplet impingement erosion of steels and alloys with the structure of ferrite, austenite, sorbitol and martensite are presented. The efficiency of the nucleation stage during the incubation period of erosive wear of the materials studied was evaluated.

Discussion and Conclusions. There are no strict instrumental methods for determining the duration of the nucleation stage; therefore, it is recommended to use the proposed analytical model. In addition, the work performed gave a significant application result, i.e. it showed that the focused design of the material structure can significantly increase the wear resistance. 

 

About the Authors

O. V. Kudryakov
Don State Technical University
Russian Federation


V. N. Varavka
Don State Technical University
Russian Federation


I. Yu. Zabiyaka
Don State Technical University
Russian Federation


E. A. Yadrets
Don State Technical University
Russian Federation


O. V. Shvedchikova
Don State Technical University
Russian Federation


References

1. Field, J. E. The Effects of Target Compliance on Liquid Drop Impact / J. E. Field, J. P. Dear, J. E. Ogren // Journal of Applied Physics. — 1989. — Vol. 65. — P. 533–540.

2. Heymann, F. J. Liquid Impingement Erosion / F. J. Heymann // Friction, Lubrication, and Wear Technology. — 1992. — Vol. 18. — P. 214–220.

3. Itoh, H. Evaluation of Erosion by Liquid Droplet Impingement for Metallic Materials / H. Itoh, N. Okabe // Transaction of JSME. — 1993. — Vol. 59. — P. 2736–2741.

4. Richman, R. H. Liquid-Impact Erosion / R. H. Richman // Failure Analysis and Prevention. — 2002. — Vol. 11. — P. 1013–1018.

5. Haller, K. K. Computational Study of High-speed Liquid Droplet Impact / K. K. Haller, Y. Ventikos, D. Poulikakos // Journal of Applied Physics. — 2002. — Vol. 92. — P. 2821–2828.

6. Arai, J. Numerical Analysis of Droplet Impingement on Pipe Inner Surface Using a Particle Method / J. Arai, S. Koshizuka // Journal of Power Energy Systems. — 2009. — Vol. 3. — P. 228–236.

7. Xiong, J. Numerical Analysis of Droplet Impingement Using the Moving Particle Semi-implicit Method / J. Xiong, S. Koshizuka, M. Sakai // Journal of Nuclear Science Technology. — 2010. — Vol. 47. — P. 314–321.

8. Li, R. A Numerical Study of Impact Force Caused by Liquid Droplet Impingement onto a Rigid Wall / R. Li, H. Ninokata, M. Mori // Progress in Nuclear Energy. — 2011. — Vol. 53. — P. 881–885.

9. Li, R. A Numerical Study on Turbulence Attenuation Model for Liquid Droplet Impingement Erosion / R. Li [et al.] // Annals of Nuclear Energy. — 2011. — Vol. 38. — P. 1279–1287.

10. Sanada, T. A Computational Study of High-speed Droplet Impact / T. Sanada, K. Ando, T. Colonius // Fluid Dynamics Materials Processing. — 2011. — Vol. 7. — P. 329–340.

11. Kudryakov, O. V. Integrated Indentation Tests of Metal-Ceramic Nanocomposite Coatings / O. V. Kudryakov, V. N. Varavka // Inorganic Materials. — 2015. — Vol. 51, № 15. — P. 1508–1515.

12. Varavka, V. N. Regularities of Steel Wear under the Impact of Discrete Water-Droplet Stream. Part I: Initial Stage of Droplet_Impingement Erosion / V. N. Varavka, O. V. Kudryakov // Journal of Friction and Wear. — 2015. — Vol. 36, № 1. — P. 71–79.

13. Varavka, V. N. Regularities of Steel Wear under the Impact of Discrete Water-Droplet Stream. Part II: Stage of the Developed Droplet-Impingement Erosion / V. N. Varavka, O. V. Kudryakov // Journal of Friction and Wear. — 2015. — Vol. 36, № 2. — P. 153–162.

14. Оценка эрозионной стойкости упрочненных металлических сплавов в условиях каплеударного воздействия / О. В. Кудряков [и др.] // Вестник Дон. гос. техн. ун-та. — 2018. — Т. 18, № 1. — С. 6–15.

15. Application of Nanocomposite Coatings to Protect Power Equipment from Droplet Impingement Erosion / V. N. Varavka [et al.] // Thermal Engineering. — 2014. — Vol. 61, no. 11. — P. 797–803.

16. Кинетика зарождения и развития процесса эрозионного разрушения поверхности сталей при каплеударном воздействии / В. А. Рыженков [и др.] // Надежность и безопасность энергетики. — 2012. — № 1 (16). — С. 67–71.

17. Закономерности и параметры каплеударной эрозии титановых сплавов / В. Н. Варавка [и др.] // Известия вузов. Северо-Кавказский регион. Технические науки. — 2011. — № 6. — С. 92–98.

18. Li, R. A Calculation Methodology Proposed for Liquid Droplet Impingement Erosion / R. Li, M. Mori, H. Ninokata // Nuclear Engineering and Design. — 2012. — Vol. 242. — P. 157–163.

19. Sasaki, H. Numerical Analysis of Influence of Roughness of Material Surface on High-Speed Liquid Droplet Impingement / H. Sasaki, Y. Iga // Journal of Pressure Vessel Technology. — 2019. — Vol. 141, 031404. — 7 p.

20. Isomoto, Y. Erosion Phenomenon Caused by Water Droplet Impingement and Life Prediction of Industrial Materials. Part 2. Establishment of Predictive Equations and Evaluation of Material Performance / Y. Isomoto, H. Miyata // Zairyo-to-Kankyo. — 2008. — Vol. 57. — P. 146–152.

21. Modeling Study of Liquid Impingement Erosion of NiAl Alloy / J. Zhao [et al.] // Wear. — 2014. — Vol. 311. — P. 65–70.

22. Ботвина, Л. Р. Разрушение: кинетика, механизмы, общие закономерности / Л. Р. Ботвина. — Москва : Наука, 2008. — 334 с.

23. Frost, H. J. Deformation-Mechanism Maps. The Plasticity and Creep of Metals and Ceramics / H. J. Frost, M. F. Ashby. — Oxford ; New York ; Sydney : Pergamon, 1982. — 166 р.

24. Kudryakov, O. V. Dislocation Quasi-Dipoles and Their Possible Role in Martensitic Transformations in Steel / O. V. Kudryakov // The Physics of Metals and Metallography. — 2002. — Vol. 94, № 5. — P. 421–428.

25. Кудряков, О. В. Феноменология мартенситного превращения и структуры стали / О. В. Кудряков, В. Н. Варавка. — Ростов-на-Дону : Издательский центр ДГТУ, 2004. — 200 с.

26. Hedstrӧm, P. Deformation and Martensitic Phase Transformation in Stainless Steels / P. Hedstrӧm. — Luleå : Universitetstryckeriet, 2007. — 218 р.

27. Ashby, M. F. Engineering Materials. An Introduction to their Properties and Applications / M. F. Ashby, D. R. Jones. — 2nd ed. — Oxford : Butterworth-Heinemann, 1996. — 322 p.

28. Morphological features and mechanics of destruction of materials with different structures under impact drop cyclic loading / V. N. Varavka [et al.] // MATEC Web of Conferences. — 2017. — Vol. 132, 03004. — 4 p.

29. Механика разрушения и прочность материалов. Справ. пособ. : в 4 т. Т. 3. Характеристики кратковременной трещиностойкости материалов и методы их определения / С. Е. Ковчик, Е. М. Морозов. — Киев : Наукова думка, 1988. — 436 с.

30. Селезнев, Л. И. Эрозионный износ конструкционных материалов / Л. И. Селезнев, В. А. Рыженков // Технология металлов. — 2007. — № 3. — С. 19–24.

31. Ahmad, M. Experimental Assessment of Droplet Impact Erosion Resistance of Steam Turbine Blade Materials / M. Ahmad, M. Casey, N. Sürken // Wear. — 2009. — Vol. 267. — P. 1605–1618.

32. Seleznev, L. I. Phenomenology of Erosion Wear of Constructional Steels and Alloys by Liquid Particles / L. I. Seleznev, V. A. Ryzhenkov, A. F. Mednikov // Thermal Engineering. — 2010. — Vol. 57, № 9. — P. 741–745.

33. Experiments on Liquid Droplet Impingement Erosion by High-speed Spray / N. Fujisawa [et al.] // Nuclear Eng. Design. — 2012. — Vol. 250. — P. 101–107.

34. Hattori, S. Effect of Impact Angle on Liquid Droplet Impingement Erosion / S. Hattori, M. Kakuichi // Wear. — 2013. — Vol. 298–299. — P. 1–7.


Review

For citations:


Kudryakov O.V., Varavka V.N., Zabiyaka I.Yu., Yadrets E.A., Shvedchikova O.V. Analysis of the initial stage of fatigue wear in heterostructure materials under contact cyclic loading. Vestnik of Don State Technical University. 2019;19(4):328-334. https://doi.org/10.23947/1992-5980-2019-19-4-328-334

Views: 594


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)