Methods of simulation mathematical modeling of the Russian derivatives market in modern times
https://doi.org/10.23947/1992-5980-2019-19-4-398-406
Abstract
Introduction. The paper is devoted to simulation modeling. Basic methods of the simulation mathematical modeling in the derivatives market are described. A group of realistic nonGaussian Levy processes that generalize the classical BlackScholes model is considered. The work objective is to study the most efficient methods of market forecasting, as well as the software implementation of the simulation mathematical modeling technique of the Russian derivatives market based on the Levy model. This research is relevant due to the demand for applications that simulate the dynamics of financial assets and evaluate options in realistic models of the derivatives market, allowing for jumps.
Materials and Methods. Basic methods for forecasting the derivatives market, methods for determining the volatility rate at a known option price, are considered. The most effective types of Levy processes for the simulation mathematical modeling of the Russian derivatives market at the present stage are highlighted. The possibilities of the Java language for the implementation of mathematical methods are considered.
Research Results. A program is developed in the Java programming language that implements the Levy mathematical model, which includes Gaussian and generalized Poisson processes. The program for calculating the mathematical method is created in the free integrated application development environment NetBeans IDE to work with any operating system.
Discussion and Conclusions. The result of the simulation mathematical modeling analysis has shown that the most efficient methods in the derivatives market are those based on realistic non-Gaussian Levy processes. The software implementation of such mathematical methods can be used for educational purposes. The developed application has demonstrated high quality and speed of calculations using software resources.
About the Authors
T. A. KarpinskayaRussian Federation
O. E. Kudryavtsev
Russian Federation
References
1. Вавилов, С. А. Финансовая математика. Стохастический анализ : вузовский учебник / С. А. Вавилов, К. Ю. Ерёменко. ― Москва : Юрайт, 2017. ― 244 с.
2. Осокина, Н. В. Производные финансовые инструменты в современной экономике / Н. В. Осокина, С. Ю. Носкова. // Вестник Кузбасс. гос. техн. ун-та. ― 2013. ― № 2. ― С. 149–151.
3. Pavlov, I. Optional Sampling Theorem for Deformed Submartingales / I. Pavlov & O. Nazarko // Theory of Probability & Its Applications. — 2015. — Vol. 59. — P. 499–507. DOI: https://doi.org/ 10.1137/ S0040585X97T987259
4. Безруков, А. В. Эконометрическая модель фондового индекса как инструмент статистического мониторинга устойчивости финансового рынка / А. В. Безруков, Ю. И. Аболенцев // Вестник университета. ― 2010. ― № 6. ― С. 236–241.
5. Сокуренко, А. П. Тенденции срочного рынка в России / А. П. Сокуренко // Концепт. ― 2015. ― Т. 13. ― С. 3206–3210. ― Режим доступа : http://e-koncept.ru/2015/85642.htm (дата обращения : 20.10.2019).
6. Гречко, А. С. Адекватное моделирование российского срочного рынка / А. С. Гречко, О. Е Кудрявцев, В. В. Родоченко // Наука и образование: хозяйство и экономика; предпринимательство; право и управление. ― 2015. ― № 6. ― С. 63–67.
7. Black, F. The Pricing of Options and Corporate Liabilities / F. Black, M. Scholes // The Journal of Political Economy. — 1973. — Vol. 81, no. 3. — P. 637–654.
8. Schoutens, W. Exotic Options under Levy Models: An Overview / W. Schoutens. — Belgium. — 2004. — P. 4–6.
9. Ефремов, В. А. Моделирование финансовых временных рядов на основе процессов Леви для определения премии опционных контрактов / В. А. Ефремов // Международный научно-исследовательский журнал. — 2012. — № 4 (4). — С. 7–11. — Режим доступа : //research-journal.org/technical/modelirovanie-finansovyxvremennyx/ (дата обращения : 14.10.2019).
10. Кудрявцев, О. Е. Приближённая факторизация Винера-Хопфа и методы Монте-Карло для процессов Леви / О. Е. Кудрявцев // Теория вероятностей и её применения. ― 2019. ― Т. 64, Вып. 2. ― С. 228–257. DOI: https://doi.org/10.4213/tvp5234
11. Сьерра, Кэти Изучаем Java / Кэти Сьерра, Берт Бейтс. ― Москва: ЭКСМО, 2015. ― 717 с. ― Режим доступа : https://book24.ru/product/izuchaem-java (дата обращения : 14.10.2019).
Review
For citations:
Karpinskaya T.A., Kudryavtsev O.E. Methods of simulation mathematical modeling of the Russian derivatives market in modern times. Vestnik of Don State Technical University. 2019;19(4):398-406. https://doi.org/10.23947/1992-5980-2019-19-4-398-406