Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

Controllable vibration of mobility links of production mechanism

https://doi.org/10.23947/1992-5980-2017-17-3-78-88

Abstract

Introduction. The work subject is investigating friction characteristics of the moving surfaces of the production mechanism (PM) links including executive mechanisms (EM), and work tools (WT) of technological machines (TM) in the low-speed zone of an asynchronous motor (AM) powered from an autonomous voltage inverter (AVI) in the “AVI - AM” system. The work objective is to find a technical solution to the reduction of the friction effect in the PM links on the frequency-controlled drive (FCD) mechanical characteristics in the low- and creep-speed zone, and also, to the validation of the rated vibration feasibility of the mobile links in the PM guides under the starting-braking AM modes. Materials and Methods. To solve the research problems, the concept of bimodal AVI control that provides the formation of quasi-sinusoidal voltage for AM power supply in the “AVI - AM” system with the harmonic coefficients Ku < 8% and Ku > 8% is used. The program control of the amplitudes of the fundamental 5th and 7th harmonics of the stator current is applied. These harmonics form the fluctuating torques on the AM shaft and cause the normalized vibration of the PM links. Research Results. The justification and experimental proof of the AVI control feasibility providing a project change in the AM shaft vibration amplitude and a decrease in the effective friction coefficient of the PM moving links aiming at the elimination of the seizure of the links under the PM operation conditions are obtained. Such an effect is possible under the AM rotor spinning in the low current frequency (0.5-20 Hz) zone which is typical for the slow-speed motion of PM under the starting-braking FCD modes. Discussion and Conclusions. The application domain of the developed technical solution covers many PMs with FCD for which the short-time operation modes (with CY of 40% and more) are considered basic. Thus, the use of the effect of vibration linearization of the friction coefficient in the PM links allows the following: to reduce the AM breakaway voltage and significantly extend the FCD speed control range, to increase the ride quality and improve the PM out put link kinematics on which the WT is fixed.

About the Authors

Nikolay F. Karnaukhov
Don State Technical University
Russian Federation


Maxim N. Filimonov
Don State Technical University
Russian Federation


Roman S. Mironenko
Don State Technical University
Russian Federation


References

1. Braslavskiy, I.Y., Ishmatov, Z.Sh., Polyakov, V.N. Energosberegayushchiy asinkhronnyy elektroprivod. [Powerefficient asynchronous drive.] Moscow: Academia, 2004, 241 c.(in Russian).

2. Karnaukhov, N.F., Pudova, Y.V., Filimonov, M.N. Uluchshenie kharakteristik chastotnogo elektroprivoda tekhnologicheskikh mashin v zone maloy skorosti dvizheniya ispolnitel'nogo mekhanizma. [Performance improvement of frequency drive of production machines in actuator low speed zone.] Molodezh'. Tekhnika. Kosmos: tr. IV Obshcherossiyskoy molodezhnoy nauch.-tekhn. konf. [Youth. Engineering. Space: Proc. IV All-Russian Youth Sci.-Tech. Conf.] Bulletin of BSTU, 2012, no. 15, pp. 331–333 (in Russian).

3. Karnaukhov, N.F. Chastotno-upravlyaemyy asinkhronnyy elektroprivod mekhatronnykh system. [Frequencycontrolled asynchronous electric drive of mechatronic systems.] Rostov-on-Don: DSTU Publ. Centre, 2009, 224 p. (in Russian).

4. Zelchenko, V.Y., Sharov, S.N. Raschet i proektirovanie avtomaticheskikh sistem s nelineynymi dinamicheskimi zven'yami. [Calculation and design of automatic systems with nonlinear dynamic links.] Leningrad: Mashinostroenie, 1986, 174 p. (in Russian).

5. Perelmuter, V.M. Pryamoe upravlenie momentom i tokom dvigateley peremennogo toka. [Direct torque and current control of AC motors.] Kharkov: Osnova, 2004, 210 p. (in Russian).

6. Karnaukhov, N.F., Filimonov, M.N., Izyumov, A.I. Osobennosti formirovaniya tsiklicheskikh rezhimov chastotnogo elektroprivoda tekhnologicheskikh mashin v zone maloy skorosti dvizheniya ispolnitel'nogo mekhanizma. [Generation features of cycle operations for production machine variable-frequency drive in low-velocity zone of actuator.] Vestnik of DSTU, 2012, no. 6 (67), pp. 76–86 (in Russian).

7. GOST32144-2014. Elektricheskaya energiya. Sovmestimost' tekhnicheskikh sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemakh elektrosnabzheniya obshchego naznacheniya. [GOST 32144-2014. Electric energy. Electromagnetic compatibility of technical equipment. Control and monitoring of electric power quality in the public power supply systems.] CIS Council for Standardization, Metrology and Certification. Moscow: Standartinform, 2014, 16 p. (in Russian).

8. Chemodanov, B.K., ed. Sledyashchie privody. V 3 t. T. I. Teoriya i proektirovanie sledyashchikh privodov. [Tracking drives. In 3 vol. Vol. I. Theory and design of servo drills.] 2nd revised and enlarged ed. Moscow: Bauman University Publ. House, 1999, 904 p. (in Russian).

9. Karnaukhov, N.F., Filimonov, M.N., Pudova, Y.V. Modelirovanie kolebaniy zvena tekhnologicheskoy mashiny v rezhime dinamicheskogo tormozheniya asinkhronnogo dvigatelya pri chastotnom upravlenii. [Vibration simulation of technological machine body in the dynamic braking mode of asynchronousmachine with frequency control.] Vestnik of DSTU, 2010, vol. 10, no. 4 (47), pp. 569–574 (in Russian).

10. Rozanov, Y.K., Sokolova, E.M. Elektronnye ustroystva elektromekhanicheskikh sistem. [Electronic devices of electromechanical systems.] Moscow: Akademiya, 2004, 272 p. (in Russian).

11. Biderman, V.L. Teoriya mekhanicheskikh kolebaniy. [Theory of mechanical oscillations.] Moscow: Vysshaya shkola, 1980, 408 p. (in Russian).

12. Frolov, K.V., ed. Vibratsii v tekhnike. Spravochnik v 6 tomakh. [Vibrations in technical facilities. Reference book in 6 volumes.] Moscow: Mashinostroenie, 1981, 453 p. (in Russian).

13. Fedorenko, I.Ya., Sabiev, U.K. Tekhnologii i sredstva mekhanizatsii sel'skogo khozyaystva. [Technologies and means of agriculture mechanization.] Bulletin of Altai State Agricultural University, 2011, no. 6 (80), pp. 82–85 (in Russian).

14. Filonov, I.P., Antsiporovich, P.P., Akulich, V.K. Teoriya mekhanizmov, mashin i manipulyatorov. [Theory of mechanisms, machines and manipulators.] Minsk: Dizayn PRO, 1998, 656 p. (in Russian).

15. Abdo, J., Tahat, M. The Effect of Frequency and Amplitude of Vibration on the Coefficient of Friction for Metals. Tribology International, 2008, vol. 41, iss. 4, pp. 307–314.

16. Altpeter, F. Friction modeling, identification and compensation. Lausanne: EPFL, 1999, 150 p.

17. Panovko, Y.G. Lektsii po osnovam teorii vibratsionnykh mashin i tekhnologiy. [Lectures on the theory basics of vibrating machines and technologies.] Moscow: Bauman University Publ. House, 2008,192 p. (in Russian).

18. Zoteev, V.E.; Radchenko, V.P., ed. Parametricheskaya identifikatsiya dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravneniy. [Parametric identification of dissipative mechanical systems based on difference equations.] Moscow: Mashinostroenie, 2009, 344 p. (in Russian).

19. Demidov, S.V., et al. Elektromekhanicheskie sistemy upravleniya tyazhelymi metallorezhushchimi stankami. [Electromechanical control systems for heavy metal cutting machines.] Leningrad: Mashinostroenie, 1986, 236 p. (in Russian).

20. Karnaukhov, N.F. Modelirovanie rezhima tormozheniya asinkhronnogo dvigatelya chastotnogo elektroprivoda s ispol'zovaniem garmonik toka statora. [Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics.] Vestnik of DSTU, 2016, vol. 16, no. 1 (84), pp. 87–98 (in Russian).

21. Filimonov, M.N., Karnaukhov, N.F. Uluchshenie dinamiki tormozheniya asinkhronnogo dvigatelya stanochnoy sistemy s chastotnym upravleniem. [Improvement of braking dynamics of induction motor of machine system with frequency control.] Sovremennye problemy mashinostroeniya i vysokikh tekhnologiy : mat-ly mezhdunar. nauch.-tekhn. konf. V 3 t. [Modern problems of machine building and high technologies: Proc. Int. Sci.-Tech. Conf. In 3 vol.] Rostov-on-Don: DSTU Publ. Centre, 2005, vol. 1, pp. 236–242 (in Russian).

22. Karnaukhov, N.F., Filimonov, M.N., Derkachev, N.V. Osobennosti formirovaniya dvukhtokovogo dinamicheskogo tormozheniya asinkhronnogo dvigatelya mekhatronnoy sistemy pri chastotnom upravlenii. [Features of formation of two-current dynamic braking of induction motor of mechatronic system under frequency control.] Mekhatronika- 2008: mat-ly IV Mezhdunar. nauch.-prakt. stud. kollokviuma. [Mechatronics-2008: Proc. 4th Int. Sci.-Pract. Stud. Colloquium.] Novocherkassk, 2008, pp. 17–20 (in Russian).

23. Karnaukhov, N.F., Prus, V.A., Filimonov, M.N. Energeticheskie pokazateli elektroprivoda pri chastotnom sposobe upravleniya asinkhronnym dvigatelem. [Power indicators of electric drive under frequency control method of asynchronous motor.] Trudy VIII Mezhdunar. nauch.-tekhn. konf. po dinamike tekhnologicheskikh sistem. [Proc. VIII Int. Sci.-Tech. Conf. on Technological Systems Dynamics.] Rostov-on-Don: DSTU Publ. Centre, 2007, vol. III, pp. 24–30 (in Russian).

24. Karnaukhov, N.F., Filimonov, M.N., Ushakov, S.A. Ustanovka dlya demonstratsii reklamno-informatsionnogo materiala i ustroystvo upravleniya peremeshcheniem nositelya: patent № 36914 Ros. Federatsiya : MPK7 G 09 F 13/00 H 02 P 7/36. [Installation for demonstration of promotional content and media motion-control device.] Patent RF, no. 36914, 2004 (in Russian).


Review

For citations:


Karnaukhov N.F., Filimonov M.N., Mironenko R.S. Controllable vibration of mobility links of production mechanism. Vestnik of Don State Technical University. 2017;17(3):78-88. (In Russ.) https://doi.org/10.23947/1992-5980-2017-17-3-78-88

Views: 564


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)