Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search
Vol 17, No 3 (2017)
View or download the full issue PDF (Russian)

MECHANICS

5-13 616
Abstract
Introduction. The specification of the strength characteristics of the diffusion layer of carburized (C) and nitro-carburized (NC) involute gears is described. Regulated by GOST 21354-87, the dependence of the surface endurance limit of steel parts on hardness in the region of finite (up to 10-12 million cycles) life is overstated. The work objective is to determine the maximum allowable load level of the involute gearing under the conditions of alternative failure forms and the area of correct application of GOST 21354-87 recommendations. Materials and Methods. In the case-hardened parts, both deep and surface processes of contact fracture occur simultaneously. However, these processes have essentially different mechanisms of contact-fatigue durability with fundamentally different mechanisms of the contact-fatigue life. The high-end fracture mode is determined by a variety of factors, the key ones being the level of intensity and the properties of the near-surface layers of the material. The loading capacity of the diffusion layer is investigated on the basis of the experimental data by the strength assessment procedure of a structurally inhomogeneous material. Here, Pisarenko-Lebedev generalized criterion of limiting state is used. Research Results. Consideration of the effect of the plastic properties of the material and its variation within the diffusion layer has allowed significantly increase the forecasting validity of the loading capacity level of the carburized and nitro-carburized gears for contact strength. The occurrence of the threshold value of the working surface hardness of the wheels teeth is confirmed at the level of 60-61 Rockwell units. This level increase leads to the decrease in contact-fatigue life. The plasticity parameter impact on the capability level and the variation of this parameter value for different types of the thermo-chemical treatment (TCT) is assessed. In the finite life area, deep contact fractures are leading. And the limits of contact fatigue life upon surface pitting readings should be oriented to the allowed normal deep contact stress. Discussion and Conclusions . The obtained results are in qualitative agreement with the experimental data, but they exceed them a little in some cases. Studies on the plasticity parameter value and its variation depending on the chemical composition of the steel and the TCT type are needed. But already at this stage, the results obtained can be used in the design of heavy-loaded case-hardened gears to determine the surface hardness and the diffusion layer thickness. The application domain includes the tractor track gear transmissions, oil-producing beam engines, mining and handling facilities.

MACHINE BUILDING AND MACHINE SCIENCE

14-26 572
Abstract
Introduction. One of the mechanisms causing the loss of balance stability in the dynamic cutting system is specified by the forces-processing speed relation. Again, the forces-speed relation is explained by the temperature variation associated with the release of energy in the cutting zone. Irreversible transformations in the cutting area (and, consequently, the temperature) not only affect the stress-strain behavior of the cutting zone material, but results in the formation of various dissipative structures in the primary plastic flow areas, and the tool face-turnings contact. In this case, all changes in the cutting area properties depending on the heat generation and transfer occur in the course of time. Materials and Methods. A system mathematical model is given; the problem of the thermodynamic subsystem effect on the forming movement trajectories stability and on the attracting sets made up in the neighborhood of these trajectories is considered. And examples of the thermodynamic subsystem effect on the cutting system dynamics in general are given. Research Results. In all well-known papers, the dynamic cutting system is examined as a mechanical subsystem which coordinates of state in no way depend on the coordinates of the thermodynamics subsystem. In contrast to the known studies, the results of investigating interconnected thermodynamic and mechanical subsystems are given here. The primary focus is on the dynamic cutting system properties. The change in these properties is considered depending on the transient processes in the mechanical and thermodynamic subsystems. Their interrelation is shown through the change in parameters depending on temperature. The variation of chipping pressure on the tool face caused by irreversible energy transformations in the cutting area is taken into account. Besides, temperature tool deformations are considered. Thus, interference of the mechanical and thermodynamic subsystems is examined. Discussion and Conclusions. Irreversible transformations applied to the cutting area can significantly affect the processing properties, such as balance point stability, as well as various attracting sets formed in its vicinity. Here, the balance point of the dynamic cutting system is considered in the moving coordinates which are determined by the controlled trajectories of the machine executive elements. Both the balance point and the attracting sets characterize elastic deformation shifts of the cutting tip against the workpiece in its contact point with the tool. Therefore, under instability, the formed attracting sets directly affect the workpiece quality parameter. Considering thermodynamic processes allows not only to increase validity of studying the dynamic system of cutting, but also to develop new approaches to the treatment process control.
27-37 572
Abstract
Introduction. The development of the design model of the infinite radial bearing greased by the fusible coating melt with account of the lubricant pressure-viscosity ratio is considered. The parameters caused by the fusible coating melt of the bearing bush against the specific heat of fusion, and the lubricant pressure-viscosity ratio, are studied. The effect of these factors on the key operating data of the tribosystem is estimated. The work objective is the generation of the refined design models of infinite radial bearings operating in the hydrodynamic lubrication mode with a lubricant and a fusible coating melt of the bearing bush taking into account the lubricant pressure-viscosity ratio for the application in the engineering practice. Materials and Methods. New mathematical models describing the incompressible lubricant movement to the approximation for a thin layer, the equation of continuity, and the energy dissipation rate ratio, for determining the profile of the melted surface of the fusible coating of the bearing bush with account of the effect of several supplementary factors, are proposed. A comparative analysis of the newly obtained and already available results is performed. That has confirmed the approximation of the new model to the actual practice. Research Results. New multiparameter expressions for the key operating characteristics of the friction pair under study taking into account the lubricant pressure-viscosity ratio in the presence of a lubricant and a fusible coating melt of the bearing bushing are developed. The effect of the parameters considering a whole array of variables caused by the fusible coating melt of the bearing bushing on the specific heat of fusion is estimated. Discussion and Conclusions. The influence of the factors not yet studied which essentially complicates the task but makes its solution universal and required in the present-day tribological components, is summarized. The numerical analysis results of the obtained theoretical studies show that slider bearings operating on the fusible coating melt have an abnormally low friction factor (the friction coefficient depends on the parameter due to the melt which is close to linear). The obtained results can be used under the conditions when the lubricant supply involves some problems, in particular, in such branches as engineering, aircraft building, instrument making, etc.
38-45 621
Abstract
Introduction. The research results of the vibration part processing in the steel balls medium are provided. Technological capabilities of the treatment are identified. The concept of process reliability is considered. Factors affecting the output parameters of a (process) control object from the point of view of its reliability, and indicators for estimating the process reliability are determined. Materials and Methods. As an object for the reliability research, the vibration finishing-strengthening processing in the steel balls medium is selected. This process can be performed on the part hardening and finishing operations, peening, and coating (galvanic, paint, rubber, adhesive, etc.) preparation of parts. Samples from various materials applied in machine industry and instrument-making are used. Research Results. A set of models for forming process reliability indices that allow providing increase in efficiency and reaching the specified value and stability of quality parameters of the processed part is obtained. Dependences for the determination of arithmetic average surface roughness, hardening depth, deformation ratio, and cutting time, are determined. A set of pilot studies which results confirm adequacy of the theoretical dependences is carried out. Discussions and Conclusions. A set of the obtained models can help to calculate the accuracy factor value at the stage of process design that will allow predicting reliability of the process accepted for production.
46-59 443
Abstract
Introduction. The possibilities of creating new approaches to the evaluation of the dynamic properties of mechanical oscillation systems are considered. The research objective is to develop a method for constructing mathematical models of mechanical oscillatory systems with several degrees of freedom based on the concepts of system-forming fundamental capabilities of dyads as certain structural formations that determine features of the states of the initial system as a whole. Materials and Methods. Approaches and techniques of the structural mathematical modeling are used, within which a mechanically oscillating system is compared with a dynamically equivalent structural diagram of an automatic control system. Estimation of the dynamic properties and introduced additional couplings is based on the application of transfer functions, amplitude-frequency characteristics, and frequency analysis technologies. Research Results. The changeability of the dynamic system properties through introducing additional constraints that realize the transformation of states in the interactions of elements on the basis of double differentiation effects is proved. The possibilities of changes that can be initiated by devices for converting motion are shown. Discussion and Conclusions. A technique for building mathematical models of dyads, and a technology for estimating their dynamic properties are developed. Physically realizable schemes of the design engineering solutions based on motion translation devices are proposed.
60-69 539
Abstract
Introduction . Until now, the use of composite materials has not received due attention because of the fact that their behaviour under the effect of certain kinds of loads is difficult enough to predict. However, in connection with the discovery and production of new types of materials, they begin to play an increasing role because of their high mechanical and physical properties. The objective of the conducted investigations is to study properties of the composite materials components for their application in the part production of agricultural machinery. Particularly, the task is to assist manufacturers in getting access to new technologies, to demonstrate the possibility of localizing the composite materials production. The considered composites can be used for the production of pipes and ripper tools. Materials and Methods. The components available at the domestic market are studied. Fiberglass is selected as a material, and polyester - as a binder. In addition, for each type of material, studies have been carried out to determine the modulus of elasticity and density in tension, bending and shear, and also the tensile strength under these types of deformation. Research Results. The experimental results allow arguing that fiberglass is the best from the examined components (fiberglass, carbon, and layered carbon) according to its physical and mechanical properties. The binder material density value obtained experimentally is 1183 kg / m3, and the experimental value of the tensile modulus E = 1585 MPa. The experiments on testing physical and mechanical characteristics of the binder component have shown that polyester corresponds to the standard by 85%, and this is the best result. Discussion and Conclusions. The mechanical properties of a composite material made in the form of a stack of fiberglass layers and a binder, dampening polyester, were considered. In this case, the values of practical and theoretical results were compared. As a result, the testing on the material static tension has given the experimental value of the elasticity modulus of Ecm = 4836 MPa, and the tensile modulus - Еc = 1530 MPa. This differs from the value given for fiberglass by the cutting and random mixing technique ( Еc = 3200 MPa).
70-77 482
Abstract
Introduction. The development of the design model of a thrust sliding bearing with a two-layer porous coating on the way surface running on an electrically conductive lubricant is described. The work objectives are the development and computational justification of the possible increase in oil consumption, growth of the bearing capacity, and reduction of the frictional force, due to their design models refinement. This is based on the formation of the computed hydrodynamic models of thrust bearings taking into account the dependence of the porous layers permeability on the way surface under the steady flow of the electroconductive liquid lubricant. Materials and Methods. New mathematical models that describe a steady flow of the electrically conductive lubricant in the working gap between an inclined slider and a guide with a bilayered porous coating are proposed. The given numerical analysis of the essential performance features has shown that bearings with a two-layer porous coating on the way surface significantly increase the damping characteristics of the supports and bearing capacity of the bearing, and reduce the frictional force. Research Results. A design model of the thrust sliding bearing is formed taking into account the porous coating permeability on the way surface. That is based on the equations of the steady flow of the electrically conductive incompressible liquid lubricant for a “thin layer” in the working gap, continuity and Darcy in the presence of an electromagnetic field. The authors have found the exact self-similar solution to a thrust bearing with a two-layer porous coating on the way surface for the field of velocities and pressures in the lubricating layer and porous coating. Besides, multiparameter expressions for the essential bearing performance with the account for the availability of electromagnetic fields, the permeability of porous layers, and the ratio of the thicknesses of porous layers, are specified. Discussion and Conclusions. The received updated calculation models have made it possible to determine the effect of a number of additional factors, as well as to perform a comparative analysis of the newly obtained results and those already available which confirms the close approximation of the new model to the actual practice. The theoretical models provide the necessary engineering design calculations in a sufficiently wide range of speeds and loads for the application in engineering, aircraft building, instrument making, etc.
78-88 576
Abstract
Introduction. The work subject is investigating friction characteristics of the moving surfaces of the production mechanism (PM) links including executive mechanisms (EM), and work tools (WT) of technological machines (TM) in the low-speed zone of an asynchronous motor (AM) powered from an autonomous voltage inverter (AVI) in the “AVI - AM” system. The work objective is to find a technical solution to the reduction of the friction effect in the PM links on the frequency-controlled drive (FCD) mechanical characteristics in the low- and creep-speed zone, and also, to the validation of the rated vibration feasibility of the mobile links in the PM guides under the starting-braking AM modes. Materials and Methods. To solve the research problems, the concept of bimodal AVI control that provides the formation of quasi-sinusoidal voltage for AM power supply in the “AVI - AM” system with the harmonic coefficients Ku < 8% and Ku > 8% is used. The program control of the amplitudes of the fundamental 5th and 7th harmonics of the stator current is applied. These harmonics form the fluctuating torques on the AM shaft and cause the normalized vibration of the PM links. Research Results. The justification and experimental proof of the AVI control feasibility providing a project change in the AM shaft vibration amplitude and a decrease in the effective friction coefficient of the PM moving links aiming at the elimination of the seizure of the links under the PM operation conditions are obtained. Such an effect is possible under the AM rotor spinning in the low current frequency (0.5-20 Hz) zone which is typical for the slow-speed motion of PM under the starting-braking FCD modes. Discussion and Conclusions. The application domain of the developed technical solution covers many PMs with FCD for which the short-time operation modes (with CY of 40% and more) are considered basic. Thus, the use of the effect of vibration linearization of the friction coefficient in the PM links allows the following: to reduce the AM breakaway voltage and significantly extend the FCD speed control range, to increase the ride quality and improve the PM out put link kinematics on which the WT is fixed.
89-95 506
Abstract
Introduction. The pilot study method and development of technological recommendations on friction welding (FW) of fittings and nozzles of small (up to 80 mm) diameter for welded constructions of the thermal and atomic engineering are described. The feasibility of applying the method of FW of small-diameter fittings and nozzles for the powerplant package units instead of manual arc welding (MAW) is studied. Materials and Methods. Models of fittings and nozzle units are made of low-carbon 22К steel. The selection of the angle of the conical surface preparation, the optimization of FW mode parameters, and welding of the fitting models of 40 mm in diameter are carried out on the MST-35-5 machine. Welding of nozzle models of 80 mm in diameter is implemented on the MST-41machine under the conditions of “EMK-ATOMMASH” JSC. A model structure of the nozzle unit with different angles of the conical surface is developed to select the angle of the conical surface and to optimize welding mode parameters. The dimensions of the mating interfaces angles are chosen allowing for the performance of the MST-35-5 welding machine, and for the anticipated dimensions of the fusion zone under formation which determine the weld metal quality. Research Results . The design of models and connected (conical) surfaces of fitting and nozzle units is developed. The choice of optimum angles of surfaces of preparation for welding is explained. The selection of welding parameters values is proved, and their experimental verification is carried out. Welded joints quality is tested through the nondestructive and destructive methods. The effect of the constructive and technological factors on the quality of welded joints is determined. Discussion and Conclusions . The obtained successful outcome of the pilot study has confirmed the technological capability and economic feasibility of the application of friction welding for small-diameter fittings and nozzles instead of manual arc welding with coated electrodes. Investigation of feasibility of applying FW for welding fittings and nozzles should be continued in the following directions: development of equipment; certification of the welding method; development and testing of the friction welding technology.
96-102 477
Abstract
Introduction . Cabs of a wide range of technological machines of various functional purposes, in particular, track cranes of road-building equipment, have a large glass area. It will be observed that glazing should be designated as a “weak” element both in noise proofing and mechanical impedance which explains the significant effect of air and structural noise constituents on the formation of the acoustic characteristics inside such cabs. Materials and Methods . The present study objective is to analyze noise spectra created by the emission of the cab glazing elements in the closed space in the form of a rectangular parallelepiped. The investigative technique of the acoustic characteristics is based on the fundamental principles of the engineering vibroacoustics for proportional spaces. Research Results . Since the cabs of any machines and equipment are energetically closed systems consisting of small-scale plates, the vibroacoustic characteristics spectra analysis is based on the power balance methods. The existing studies are well founded for estimating the sound pressure levels created inside the production areas when the anacamptic sound impact can be neglected. When evaluating noise levels inside the cabins, this assumption is oversimplified, and, therefore, the studies presented in the paper are based on the system of the piston-type sources emitting sound energy into a closed space, while the dimensions of the radiators as such are commensurable to the overall sizes of the cab. This topic is most relevant for locotractors and diesel locomotive cabs. Discussion and Conclusions . The results of the theoretical studies allow performing engineering calculations of the vibration and noise spectra of all elements of the cab enclosure, and evaluating the quantitative contribution of each one to the formation of noise spectra within the cabin in the operators' workplaces. Such analysis permits to estimate the contribution of each source at the designing stage of the cabins and to define the excess over the admissible limit values. On this basis, also in the design, the most simple, technologically and economically feasible options are chosen to ensure the sanitary norms of noise by obtaining the required soundproofing parameters which is accompanied by the decrease in the proportion of the noise air constituent, as well as the impedances of the corresponding elements. This, in turn, leads to the reduction of the part of the noise structural constituent.
103-109 562
Abstract
Introduction. The article is devoted to the crack occurrence analysis in a powder body, and identification of the basic laws of this process in the freely upset material. The work objective is to study kinetics of crack initiation and propagation in freely upset powder materials, and microstructure of alloy and iron powders in a variety of areas in order to determine the conditions for defect-free deformation of the material under free upsetting. The analysis of the crack development in a powder body is of great practical importance, and therefore, the investigation of this problem is essential for the fabrication of accepted parts. Materials and Methods. New powder materials from the Swedish company Höganäs which are characterized by the improved deformation characteristics are considered. Besides, these materials differ in occurrence of alloy elements, such as Ni and Mo which affect cracking. Microstructures of the upset samples are analyzed using the metallographic microscope. Research Results . Cracks in the upset materials are classified as cleavage cracks. The crack origin is determined by the absence of factors for the development of the sample metal component plasticity due to the occurrence of defects and pores in its body. It is established that rapid cracking is confirmed by the nature of the crack when it scarcely has extension into the sample material, and, moreover, ends at an angle to the area for development. Discussion and Conclusions. The analysis of the microcrack development allows identifying morphological structural differences of the central and fringe regions of the powder material. The peripheral area is characterized by different values of grains and increased content of micropores, and the directivity of clusters of micro-discontinuities and non-metallics, in the line of the former physical interface of the metal powder particles.
110-116 478
Abstract
Introduction. Refined computational models of tribosystems taking into account the dependence of viscosity and permeability of the porous coating on pressure through partial filling of the front gap with lubricant are described. The obtained calculated models allow for a comparative analysis of the newly received and already available results which confirms a great proximity of the new models to the actual one. Materials and Methods. Values of velocities and pressure field are specified on the basis of the liquid lubricant flow equations for the case of a “thin layer” and Darcy equation. The key operating characteristics of the friction bearings are determined in the porous coating on the journal surface. Research Results. A mathematical model of a radial bearing which allows determining velocity fields, pressure, load capacity, and friction force, with account of the dependence on a number of additional factors, is developed on the basis of the numerical analysis. Discussion and Conclusions. The obtained results can be used in the educational process, as well as in the engineering practice of machine-building tribosystems.
117-127 484
Abstract
Introduction. The investigation of thermal fluctuation processes in insulating materials in accordance with the thermal conductivity theory for solving the problems on diagnostics and forecasting the residual life of insulating materials on the basis of a digital recorder, as well as on the nondestructive temperature method, is described. The work objective is to improve the nondestructive diagnostics methods, namely, the development of an automated control system for the state of insulation, and a computational and experimental study. Materials and Methods. Mathematical models that describe the layer-by-layer temperature distribution of the cable line in accordance with the theory of thermal conductivity using Fourier differential equation are proposed. A generalized algorithm for the operation of the PCL parameters monitoring recorder is created. It implements the technique of nondestructive testing of thermal fluctuation processes in PCL insulation materials. A comparative analysis of the experimental and calculated characteristics of the temperature distributions is carried out. At that, different charging modes of operation and functions of the cable current variation are investigated. Research Results. Mathematical models and software for numerical simulation of the temperature field in the cable cross-section in accordance with the theory of thermal conductivity are developed. Physical properties of materials and the geometric dimensions of cable elements are considered. A comparative analysis of the experimental and calculated characteristics of the temperature distributions is made. The developed simplified mathematical model for determining the temperature of the most heated point of the cable core insulation on the basis of the measured values of the surface temperature of the power cable and the air temperature for various changes in the effective value of the cable current is validated. A method for investigating thermal fluctuation processes based on the layered temperature sensors in PCL is developed and justified. That makes it possible to combine two control techniques - prediction of the growing insulation defect and nondestructive testing of the thermal fluctuation processes of a power cable - in one measuring tool. The suggested mathematical model can be used as a base for calculating the thermal processes of power cables in real time mode, as its adequacy is confirmed by the experimental studies. Discussion and Conclusions. The obtained results can be used in the development of the theory, methods of diagnostics and prediction of the insulating materials state in complex distributed systems under various operating conditions.

INFORMATION TECHNOLOGY, COMPUTER SCIENCE AND MANAGEMENT

128-136 501
Abstract
Introduction. The EEG-data of patients with discirculatory encephalopathy and healthy subjects by the multidimensional scaling method are analyzed. The research subject is graphs of the vectors arrangement dynamics in the two-dimensional attribute space of EEG-data of healthy and patient subjects corresponding to each of the leads and cognitive tests. The aim was to test feasibility of the multidimensional scaling method in the EEG analysis for the classification of trial subjects for patients and healthy persons. The study objectives are the following: EEG taking in trial subjects with simultaneous testing for cognitive deteriorations; multidimensional scaling of correlation matrices in the STATISTICA system, and visual analysis of the obtained graphs. Materials and Methods. Capabilities of the multivariable technique of statistical analysis of test data - multidimensional scaling - the STATISTICA software package - are investigated. The processed data are obtained as a result of recording EEG of healthy subjects and patients with discirculatory encephalopathy using “Encephalan-131-03” electroencephalograph from 16 unipolar leads. The EEG is taken by simultaneous testing of the trial subjects by cognitive tests. Research Results. Visual analysis of the multidimensional scaling diagrams of healthy subjects has shown that the distribution of the pairwise coordinates corresponding to the tests (leads), for each of the leads (test) is characterized, generally, by a close location of the coordinates relative to each other, and in some cases - by coincidence. In patients with discirculatory encephalopathy, two-dimensional planes of the multivariate scaling are characterized by a more chaotic distribution of the spatial coordinates of each of the leads or test. Discussion and Conclusions. The efficiency effect of the multidimensional scaling as a classifier of trial subjects’ EEG is confirmed. The possibility of using the multidimensional scaling as an additional method in the diagnosis of discirculatory encephalopathy is proposed.
137-144 687
Abstract
Introduction. A quite general class of practical tasks is guided by the set covering problem: schedules building, layout of service stations, and creation of electronic circuits. It defines relevance of searching methods to improve the solution efficiency of this task. Materials and Methods. Techniques of the set covering problem solution by exact and approximate algorithms are considered. The genetic algorithm is used as the approximate method, and the branch and bounds algorithm - as the exact method. Research Results. The genetic algorithm in all its modifications on time response characteristics has shown predictability and stability in all series of experiments. The branch and bounds method was applied to the set covering task, and it has shown exact results. Discussion and Conclusions . The conducted research shows that for small sets, it is expedient to use the branch and bounds method which has demonstrated fast runtime with an assured exact result. For large sets, it is recommended to use the genetic algorithm which guarantees receiving a result with a negligible error where the execution time shift is stable and predictable.
145-155 519
Abstract
Introduction . One of the tasks arising in cryptography is to ensure the safe and honest conduct of e-voting. This procedure provides that voters submit their votes electronically - for example, through electronic terminals. A new algorithm for the distribution of threshold sensitive data for electronic voting is proposed. Materials and Methods . The results are obtained on the basis of the following methodology: finite field theory, theory of algorithms, projective geometry, and linear algebra. The developed cryptosystem is based on the application of geometric objects from projective geometry which makes it possible to use the apparatus of linear algebra to make effective decisions on cryptographic problems. To estimate the complexity of the described algorithms, classical results from the theory of algorithms are applied. Research Results . This paper describes the cryptographic algorithms of secret sharing and its subsequent restoration based on special structural properties of projective spaces over finite fields, and their link with Galois fields of the appropriate order. The component parts of these algorithms, specifically, the construction of injective mapping from a residue ring prime modulo into the projective space over finite field of specific dimension; the generation of secret shares and secret; the procedure of secret sharing and its restoration, are described in great detail. The algorithmic time complexity calculations of the formal algorithms are given. Discussion and Conclusions . The described scheme is useful for electronic voting and in other spheres where methods of threshold cryptography are applied.

SAFETY OF HUMAN ACTIVITY

156-165 630
Abstract
Introduction. The article is devoted to investigations on the “Cyclone” semi-industrial pilot plant which allows for parallel comparative aerodynamic testing of the cylindrical cyclone with “TsN-15u-300” volute and the patented cyclone with the “CSC-200-300” inverted cone. The work objective is to obtain experimentally major aerodynamic characteristics of the centrifugal dust collectors of various shapes without bunkers under the parallel comparative testing with the subsequent analysis of the results. Improving the efficiency, increasing the productivity while reducing the energy consumption for ventilation systems and metal consumption for centrifugal dust collectors, are crucial technological tasks. Materials and Methods . Parallel comparative aerodynamic testing of centrifugal dust collectors of various shapes for the cylindrical cyclone with “TsN-15u-300” volute and the patented cyclone with the “CSC-200-300” inverted cone is conducted. At this, Pitot tubes and two high-precision Testo -521 differential pressure gauges are used. Mathematical calculations of the hydraulic resistance coefficients for the investigated devices are made. Research Results. As a result of the experiments, the behavior of the total pressures and air velocity at various gage points of the inlet and outlet nozzle sections of the cyclone apparatus at different capacities of the fan exhauster is specified. The calculated hydraulic resistance coefficients (HRC) of the “CSC-200-300” device appear 2-2.2 times lower than HRC of “TsN-15u-300” due to the higher flow velocity in the device body. This indicates its best aerodynamics and possibly higher efficiency of the dust collection due to the high flow turbulence. Discussion and Conclusions . The obtained aerodynamic characteristics are used in operation to assess the effectiveness and economic benefits of the cyclone apparatus. Further experimental studies on the pilot plant are needed to verify the conclusions.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)