Sufficient conditions for convergence of positive solutions to linearized two-dimensional sediment transport problem
https://doi.org/10.23947/1992-5980-2017-17-1-5-17
Abstract
About the Authors
Alexander I. SukhinovRussian Federation
Valentina V. Sidoryakina
Russian Federation
Andrey A. Sukhinov
Russian Federation
References
1. Marchuk, G.I., Dymnikov, V.P., Zalesny, V.B. Matematicheskie modeli v geofizicheskoy gidrodinamike i chislennye metody ikh realizatsii. [Mathematical models in geophysical hydrodynamics and numerical methods for their implementation.] Leningrad: Gidrometeoizdat, 1987, 296 p. (in Russian).
2. Sukhinov, A.I., Chistyakov, A.E., Alekseenko, E.V. Numerical realization of the three-dimensional model of hydrodynamics for shallow water basins on a high- performance system. Mathematical Models and Computer Simulations, 2011, vol. 3, iss. 5, pp. 562–574.
3. Leontyev, I.O. Pribrezhnaya dinamika: volny, techeniya potoki nanosov. [Coastal dynamics: waves, moving streams, deposits drifts.] Moscow: GEOS, 2001, 272 p. (in Russian).
4. Xiaoying Liu, et al. Predictive modeling in sediment transportation across multiple spatial scales in the Jialing River Basin of China. International Journal of Sediment Research, 2015, vol. 30, iss. 3, pp. 250–255.
5. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A. Mathematical modeling of sediment transport in the coastal zone of shallow reservoirs. Mathematical Models and Computer Simulations, 2014, vol. 6, iss. 4, pp. 351–363.
6. Sukhinov, A.I., Sidoryakina, V.V. Sushchestvovanie i edinstvennost' resheniya linearizovannoy dvumernoy zadachi transporta nanosov. [Availability and uniqueness of solution to linearized two-dimensional sediment transportation problem.] Teoriya operatorov, kompleksnyy analiz i matematicheskoe modelirovanie: tezisy dokladov XIII mezhdunar. nauch. konf. [Theory of operators, complex analysis and mathematical modeling: Abstracts of XIIIth Int. Sci.Conf.] Vladikavkaz: YuMI VNTs RAN, 2016, pp. 184–185 (in Russian).
7. Sukhinov, A.I., Sidoryakina, V.V. O edinstvennosti resheniya linearizovannoy dvumernoy nachal'no-kraevoy zadachi transporta nanosov. [On the uniqueness of solutions of the linearized two-dimensional bottom deposit transportation problem.] Taganrog Institute Journal, 2016, no. 2, pp. 270–274 (in Russian).
8. Sukhinov, A.I., Sidoryakina, V.V., Sukhinov, A.A. Apriornaya otsenka resheniya dvumernoy zadachi transporta nanosov. [A priori estimate of solution to two- dimensional sediment transportation problem.] Aktual'nye problemy prikladnoy matematiki i avtomatizatsii: mat-ly mezhdunar. konf.; Nelokal'nye kraevye zadachi i sovremennye problemy analiza i informatiki: mat-ly XIV shkoly molodykh uchenykh. [Challenging issues of applied mathematics and automation: Proc. Int. Conf.; Nonlocal boundary-value problems and current problems of analysis and informatics: Proc. XIV School of young scholars.] Terskol, 2016, 363 p. (in Russian).
9. Sukhinov, A.I., Chistyakov, A.E. Adaptive modified alternating triangular iterative method for solving grid equations with a non-self-adjoint operator. Mathematical Models and Computer Simulations, 2012, vol. 4, iss. 4, pp. 398–409.
10. Sukhinov, A.I., Chistyakov, A.E., Protsenko, E.A. Matematicheskoe modelirovanie transporta nanosov v pribrezhnykh vodnykh sistemakh na mnogoprotsessornoy vychislitel'noy sisteme. [Sediment transport mathematical modeling in a coastal zone using multiprocessor computing systems.] Numerical Methods and Programming, 2014, vol. 15, iss. 4, pp. 610–620 (in Russian).
11. Sukhinov, A.I., et al. Sravnenie vychislitel'nykh effektivnostey yavnoy i neyavnoy skhem dlya zadachi transporta nanosov v pribrezhnykh vodnykh sistemakh. [Comparison of computational efficiency of explicit and implicit schemes.] Numerical Methods and Programming, 2015, vol. 16, iss. 3, pp. 328–338 (in Russian).
12. Godunov, S.K. Uravneniya matematicheskoy fiziki. [Equations of mathematical physics.] 2nd revised and enlarged ed. Moscow: Nauka, 1979, 392 p. (in Russian).
Review
For citations:
Sukhinov A.I., Sidoryakina V.V., Sukhinov A.A. Sufficient conditions for convergence of positive solutions to linearized two-dimensional sediment transport problem. Vestnik of Don State Technical University. 2017;17(1):5-17. (In Russ.) https://doi.org/10.23947/1992-5980-2017-17-1-5-17