Method of restoring multivariable Boolean function from its derivative
https://doi.org/10.23947/1992-5980-2017-17-1-122-131
Abstract
Keywords
About the Authors
Alexander V. MazurenkoRussian Federation
Nadezhda S. Mogilevskaya
Russian Federation
References
1. Logachev, О.А., Salnikov, A.A., Yashchenko, V.V. Bulevy funktsii v teorii kodirovaniya i kriptologii. [Boolean functions in coding theory and cryptology.] Moscow: MTsNMO, 2004, 470 p. (in Russian).
2. McWilliams, F.J., Sloane, N.J.A. Teoriya kodov, ispravlyayushchikh oshibki. [The theory of error-correcting codes.] Moscow: Svyaz', 1979, 744 p. (in Russian).
3. Sidelnikov, V.M. Teoriya kodirovaniya. [Coding Theory.] Moscow: FIZMATLIT, 2008, 324 p. (in Russian).
4. Deundyak, V.M., Mogilevskaya, N.S. Model' troichnogo kanala peredachi dannykh s ispol'zovaniem dekodera myagkikh resheniy kodov Rida-Mallera vtorogo poryadka. [The model of the ternary communication channel with using the decoder of soft decision for Reed – Muller codes of the second order.] University News. North-Caucasian region. Technical Sciences Series, 2015, no. 1(182), pp. 3–10 (in Russian).
5. Mogilevskaya, N.S., Skorobogat, V.R., Chudakov, V.S. Eksperimental'noe issledovanie dekoderov kodov Rida-Mallera vtorogo poryadka. [Experimental research of second order Reed-Muller codes.] Vestnik of DSTU, 2008, vol. 8, no. 3, pp. 231–237 (in Russian).
6. Mogilevskaya, N.S. Korrektiruyushchaya sposobnost' dekodera myagkikh resheniy troichnykh kodov Rida-Mallera vtorogo poryadka pri bol'shom chisle oshibok. [Correcting capacity of soft-decision decoder of ternary Reed – Muller secondorder codes with a large number of errors.] Vestnik of DSTU, 2015, no. 1, pp. 121–130 (in Russian).
7. Bohmann, D., Posthoff, Kh. Dvoichnye dinamicheskie sistemy. [Binary dynamic systems.] Moscow: Energoatomizdat, 1986, 400 p. (in Russian).
8. Deundyak, V.M., Knutova, A.V. Integriruemost' sistem polinomov neskol'kikh peremennykh pervoy i vtoroy stepeni nad prostymi polyami Galua. [Integrability of Systems of the First and Second Degree Polynomials of Several Variables over Simple Galois Fields.] Izvestiya vuzov. Severo-Kavkazskiy region. Natural Sciences. 2016, no. 2, pp. 41–46 (in Russian).
9. Mazurenko, A.V., Mogilevskaya, N.S. Algoritm vosstanovleniya bulevoy funktsii po ee proizvodnoy po napravleniyu. [Algorithm of Boolean function recovery from its directional derivative.] Sistemnyy analiz, upravlenie i obrabotka informatsii: sb. trudov VI mezhdunarodnogo seminara. [System analysis, information control and processing: Proc.VI Int. Seminar.] Rostov-on-Don, 2015, vol. 1, pp. 256–262. Available at: http://ntb.donstu.ru/content/2015421/ (accessed: 13.11.2016) (in Russian).
10. Glukhov, М.М., Yelizarov, V.P., Nechaev, A.A. Algebra. Т. 1. [Algebra. Vol.1.] Moscow: Gelios ARV, 2003, 336 p. (in Russian).
Review
For citations:
Mazurenko A.V., Mogilevskaya N.S. Method of restoring multivariable Boolean function from its derivative. Vestnik of Don State Technical University. 2017;17(1):122-131. (In Russ.) https://doi.org/10.23947/1992-5980-2017-17-1-122-131