Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

EXPLICIT EXPRESSIONS FOR PRESSURE IN ACOUSTIC WAVES MULTIPLY REFLECTED FROM REFLECTING SURFACES OF CANONICAL FORM

https://doi.org/10.12737/3499

Abstract

In fra mework of the geometrical diffraction theory, the explicit expressions for the pre s sure in waves arbitrarily re reflected N times from a contour, boundary surfaces of the cylindrical and spherical refle c tors are obtained. Pressure expressions in the recept ion point for reflectors of the canonical form are obtained on the basis of 2D and 3D sol utions to the problems on the pressure determination in the acoustical wave re - reflected from a set of reflectors in the case of high - frequency oscillations. The pro blem in its general formulation is studied on the basis of a modified physical diffraction of Kirchhoff diffraction theory. Within the frames of the proposed modification , diffraction int egrals which leading terms for asymptotic expansions are studied throug h the multidimensional stationary phase tec h nique, are obtained. The developed analytical expressions for the pressure in the re - reflected wave conform to the GTD. For all three cases, these expressions are connected with calculating the N - th order dete r mi nant (in the 2D case), and of the 2N - th order determinants (for reflectors in 3D space). An analytical and numerical analysis of the obtained expressions versus distances between a source and a receiver from the reflecting surfac e is pe rformed. The acousti c wave focusing points are marked. The problem of replacing non - plane reflectors by plane ones in the applied problems of acoustics is discussed.

About the Authors

N. V. Boyev
Southern Federal University, Russia
Russian Federation


A. V. Kolosova
Southern Federal University, Russia
Russian Federation


N. F. Todorov
Southern Federal University, Russia
Russian Federation


References

1. Штагер, Е. А. Рассеяние радиоволн на телах сложной формы / Е. А. Штагер. — Москва : Радио и связь, 1986. — 184 с.

2. Scarpetta, E. Explicit analytical representations in the multiple high-frequency reflection of acoustic waves from curved surfaces: the leading asymptotic term / E. Scarpetta, M. A. Sumbatyan // Acta Acustica united with Acustica. — 2011. — V. 97. — Pp. 115‒127.

3. Scarpetta, E. An asymptotic estimate of the edge effects in the high-frequency Kirchhoff diffraction theory for 3-d problems / E. Scarpetta, M. A. Sumbatyan // Wave Motion. — 2011. — V. 48. — Pp. 408‒422.

4. Sumbatyan, M. A. High-frequency diffraction by nonconvex obstacles / M. A. Sumbatyan, N. V. Boyev // Journal of the Acoustical Society of America. — 1994. — V. 95, № 5. — Pp. 2347‒2353.

5. Боев, Н. В. Рассеяние высокочастотных волн на поверхностях в сплошных средах с учётом переотражений / Н. В. Боев // Акустический журнал. — 2004. — Т. 50, № 6. — С. 756‒761.

6. Боев, Н. В. Коротковолновая дифракция на телах, ограниченных произвольной гладкой поверхностью / Н. В. Боев, М. А. Сумбатян // Доклады Российской Академии наук. — 2003. — Т. 392, № 5. — С. 614‒617.

7. Боровиков, В. А. Геометрическая теория дифракции / В. А. Боровиков, Б. Е. Кинбер. — Москва : Связь, 1978. — 248 с.

8. Федорюк, М. В. Метод перевала / М. В. Федорюк. — Москва : Наука, 1977. — 368 с.

9. Проскуряков, И. В. Сборник задач по линейной алгебре / И. В. Проскуряков. — Москва : Наука, 1978. — 384 с.

10. Реконструкция дефектов в слоистых композитах / А. О. Ватульян [и др.] // Вестник Дон. гос. техн. ун-та. — 2009. — Т. 9, № 2 (41). — С. 3‒14.

11. Многократное рассеяние ультразвуковых волн на системе пространственных дефектов канонической формы (теория и эксперимент) / Н. В. Боев [и др.] // Вестник Дон. гос. техн. ун-та. — 2012. — № 3 (64). — С. 5‒10.


Review

For citations:


Boyev N.V., Kolosova A.V., Todorov N.F. EXPLICIT EXPRESSIONS FOR PRESSURE IN ACOUSTIC WAVES MULTIPLY REFLECTED FROM REFLECTING SURFACES OF CANONICAL FORM. Vestnik of Don State Technical University. 2014;14(1):5-14. (In Russ.) https://doi.org/10.12737/3499

Views: 528


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)