Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

FINITE-ELEMENT MODELLING OF PIEZOELECTRIC ENERGY STORAGE DEVICE BASED ON CANTILEVER

https://doi.org/10.12737/3516

Abstract

Simulating a piezoelectric generator which is an element of the energy storage device is considered. A piezoelectric generator appears a cantilever - mounted plate on which the piezoelectric elements are glued, and the inertial mass is attached. Two options of the plate vibration exc itation are investigated. In the first case, the fixed side executes heave harmonic motions at a given frequency and with the desired amplitude; in the second — a ha r monic force is applied to this side. A three - dimensional boundary - value problem of the lin e ar theory of electroelasticity for the composite elastic and piezoelectric body is considered as a mathematical model of the device. The bo undary pro blem is solved through the finite - element package ANSYS. Under the numerical solution, PKR - 7M piezoceramic is taken as a piezoelectric material, whereas fiberglass, duralumin, steel are considered as a plate ma t e rial. Aluminum is used as a material of the inertial mass. Two cases are studied computationally. In the first case , the fixed side e x ecutes vertical harmonic vibrations at a given frequency and with a preset amplitude, in the second case, the force varying in a harmonic fashion is applied to this side. The device resonance frequency dependen ce upon the plate thickness for various materials and upon the value of the inertial element mass is studied. The results are pr esented graphically that allows finding the resonant frequency for certain sizes. The output potentia l dependences at the free electrodes of the piezoelectric elements on the resonant freque ncies and in the low - frequency region on the same parameters are investigated. These results are also presented graphically that allows a des igner to select reasonable feature sizes and the mix of ma terials to optimize the device.

About the Authors

Arkady Nikolayevich Solovyev
Don State Technical University, Russia
Russian Federation


Duong Le Van
Don State Technical University, Russia
Russian Federation


References

1. Priya, S. Energy harvesting technologies / S. Priya, D. J. Inman // Springer Science+Business Media, LLC. — 2009. — 522 p.

2. Erturk, A. Piezoelectric energy harvesting / A. Erturk, D. J. Inman // John Wiley & Sons, Ltd. — 2011. — 402 p.

3. Minazara, E. Piezoelectric Generator Harvesting Bike Vibrations Energy to Supply Portable Devices / E. Minazara, D. Vasic, F. Costa // In Proceedings of ICREPQ, 12‒14 March 2008, Santander, Spain. — 6 p.

4. Glynne-Jones, P. An electromagnetic, vibration-powered generator for intelligent sensor systems / P. Glynne-Jones, M. J. Tudor, S. P. Beeby, N. M. White // Sens. Actuators A Phys. — 2004. — Vol. 110. — № 1. — Pp. 344‒349. 5. Mitcheson, P. D. MEMS electrostatic micropower generator for low frequency operation / P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A.

5. S. Holmes, T. C. Green // Sens. Actuators A Phys. — 2004. — Vol. 115. — № 2. — Pp. 523‒539.

6. Sodano, H. A. A review of power harvesting from vibration using piezoelectric materials / H. A. Sodano, G. Park, D. J. Inman // Shock Vib. Digest. — 2004. — Vol. 36. — № 3. — Pp. 197‒205.

7. Anton, S. R. A review of power harvesting using piezoelectric materials (2003‒2006) / S. R. Anton, H. A. Sodano // Smart Mater. Struct. — 2007. — Vol. 16. — № 3. — Pp. 1‒21.

8. Erturk, A. A. Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters / A. Erturk, D. J. Inman // Journal of Vibration and Acoustics. — 2008. — Vol. 130. — № 4. — Pp. 041002-1 — 041002-15.

9. Dutoit, N. E. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters / N. E. Dutoit, B. L. Wardle, S. G. Kim // Integr. Ferroelectr. — 2005. — Vol. 71. — № 1. — Pp. 121‒160.

10. Sodano, H. A. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting / H. A. Sodano, G. Park, D. J. Inman // Journal of Strain. — 2004. — Vol. 40. — Pp. 49‒58.

11. Erturk, A. Analytical Modeling of Cantilevered Piezoelectric Energy Harvesters for Transverse and Longitudinal Base Motions / A. Erturk, D. J. Inman // In Proceedings of Structures, Structural Dynamics, and Materials Conference, Schaumburg, Illinois. 7‒10 April 2008. — 36 p.

12. Liao, Y. Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation / Y. Liao, A. H. Sodano // Smart Materials and Structures. — 2008. — Vol. 17. — 065026 (14 Pp).

13. Белоконь, А. В. Новые схемы конечно-элементного динамического анализа пьезоэлектрических устройств / А. В. Белоконь, А. В. Наседкин, А. Н. Соловьев // Прикладная математика и механика. — 2002. — Т. 66, № 3. — С. 491‒501.


Review

For citations:


Solovyev A.N., Le Van D. FINITE-ELEMENT MODELLING OF PIEZOELECTRIC ENERGY STORAGE DEVICE BASED ON CANTILEVER. Vestnik of Don State Technical University. 2014;14(1):169-179. (In Russ.) https://doi.org/10.12737/3516

Views: 678


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)