Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

ON CORRECTNESS OF BAYES FORMULA

https://doi.org/10.12737/5695

Abstract

The inadmissibility of the comparison and cooperative processing of the conditional probabilities calculated with the use of the known variations of Bayes formula considering a well-defined amount of the accumulated evidences is established. This statement is justified as follows. Due to the unequal normalization, the results leading to the conclusions mismatching the probability-theoretical law are obtained. The examples of the concrete initial data show that in the case of using the traditional formulas, the multiplicative effect is missing: reducing the posteriori conditional probabilities of each of the hypotheses under the multiplicative accumulating evidences is unfeasible. The Bayesian formula modifications are offered. They provide a well-defined quantity of sequentially accumulated evidences constructed through the common divisor which is equal to the sum of the values of all normalizable probabilities liable to comparison or cooperative processing. In contrast to the well-known formulas, due to the correct normalization, the results significantly more adequate to the initial statistics are obtained.

About the Author

Alexander Ivanovich Dolgov
Public Corporation “Design bureau on monitoring of control, navigation and communication systems”, Russia
Russian Federation


References

1. Gnedenko, B. V. Elementary Introduction to theory of Probability / B. V. Gnedenko, A. Ya. Khinchin. — San Francisco, London : Freeman and Co, 1961. — 139 p.

2. Naylor, C.-M. Build Your Own Expert System / C.-M. Naylor. — Wilmslow : Sigma Technical Press, 1983. — 248 p.

3. Романов, В. П. Интеллектуальные информационные системы в экономике : учеб. пособие. — 2-е изд., стер. / В. П. Романов. — Москва : Экзамен, 2007. — 496 с.

4. Змитрович, А. И. Интеллектуальные информационные системы / А. И. Змитрович. — Минск : НТООО «ТетраСистемс», 1997. — 496 с.

5. Вентцель, Е. С. Теория вероятностей : учеб. для вузов. — 9-е изд., стер. / Е. С. Вентцель. — Москва : Академия, 2003. — 576 с.

6. Андронов, А. М. Теория вероятностей и математическая статистика : учеб. для вузов / А. М. Андронов, Е. А. Копытов, Л. Я. Гринглаз. — Санкт-Петербург : Питер, 2004. — 481 с.

7. Баврин, И. И. Теория вероятностей и математическая статистика : учеб. для вузов / И. И. Баврин. — Москва : Высш. шк., 2005. — 160 с.

8. Пугачёв, В. С. Теория вероятностей и математическая статистика : учеб. пособие. — 2-е изд., испр. и доп. / В. С. Пугачёв. — Москва : Физматлит, 2002. — 496 с.

9. Справочник по теории вероятностей и математической статистике / В. С. Королюк [и др.]. — Москва : Наука, 1985. — 640 с.

10. Тимошенко, Е. И. Теория вероятностей : учеб. пособие / Е. И. Тимошенко, Ю. Е. Воскобойников. — Новосибирск : Новосиб. гос. архитектур.-строит. ун-т, 2003. — 98 с.


Review

For citations:


Dolgov A.I. ON CORRECTNESS OF BAYES FORMULA. Vestnik of Don State Technical University. 2014;14(3):13-20. (In Russ.) https://doi.org/10.12737/5695

Views: 422


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)