Preview

Advanced Engineering Research (Rostov-on-Don)

Advanced search

EQUILIBRIUM PLANAR CRACK WITH CONTOUR ANGULAR POINTS IN ELASTIC LAYER

Abstract

The three - dimensional static problem of the elasticity theory on the elastic layer balance weakened by a flat rectangular crack is considered. The crack is located in the median la yer plane; it is su p ported open under the normal loading applied to its edges. The layer edges are under the smooth contact with two rigid bases. The problem is converted to the solution of the known singular i n tegro - differential equation concerning the cr ack opening function through the application of two - dimensional integral Fourier transformation to the equilibrium equation. The equation solution is constructed by the direct variational method. In neighborhood of the contour angular points, the sol ution completes the co n struction numerically, with regard for the early distinguished singularity. Values of the direct str ess intensity factor in neighborhood of the crack periphery are obtained. The solution behavioral features in neig hborhood of the contour r ectilinear sites and angular points are esta b lished.

About the Authors

Boris V. Sobol
Don State Technical University.
Russian Federation


Elena V. Rashidova
Don State Technical University.
Russian Federation


Ekaterina V. Borisova
Don State Technical University.
Russian Federation


Olga P. Reshetnikova
Saratov State Technical University.
Russian Federation


References

1. Sneddon, I. N. The stress intensity factor for a flat elliptical crack in an elastic solid under uniform tension / I. N. Sneddon // Int. J. Eng. Sci. — 1979. —V. 17. — № 2. — p. 92—103.

2. Bazant, Z. Tree-dimentional harmonic functions near termination or interaction of gradient singularity lines: A general numerical method / Z. Bazant // Int. J. Eng. Sci. — 1974. — № 12. — p. 221—243.

3. Aleksandrov, V. M. Tonkie koncentratory` napryazhenij v uprugix telax/ V. M. Aleksan¬drov, B. I. Smetanin, B. V. Sobol`. — Moskva: «Fizmatlit», 1993. — 224 s. — In Russian.

4. Smetanin, B. I. Ravnovesie uprugogo sloya, oslablennogo sistemoj ploskix treshhin / B. I. Smetanin, B. V. Sobol` // PMM. — 1984. — T. 48. — №. 6. — S. 1030—1038. — In Russian.

5. Gol`dshtejn, R. V. Kachestvenny`e metody` v mexanike sploshny`x sred / R. V. Gol`dshtejn, V. M. Enotov. — Moskva: Nauka, 1989. — S. 110—115. — In Russian.

6. Gradshtejn, I. S. Tablicy` integralov, summ, ryadov i proizvedenij / I. S. Gradshtejn, I. M. Ry`zhik. — Moskva: Nauka, 1971. — 1108 s. — In Russian.

7. Irvin, G. R. Analysis of stress and strain near the end of a crack, traversing a plate / G. R. Irvin // J. Appl. Mech. — 1957. — № 3. — P. 361—364.

8. Gol`dshtejn, R. V. Variacionny`e ocenki dlya koe`fficienta intensivnosti napryazhenij na konture ploskoj treshhiny` normal`nogo razry`va / R. V. Gol`dshtejn, V. M. Enotov // Izv. AN SSSR, MTT. — № 3. — S. 59—64. — In Russian.

9. Pe`ris, P. Analiz napryazhyonnogo sostoyaniya okolo treshhin / P. Pe`ris, Dzh. Si // Prikladny`e voprosy` vyazkosti razrusheniya. — Moskva: Mir. — 1968. — S. 64—142. — In Russian.

10. Murakami, Yu. Spravochnik po koe`fficientam intensivnosti napryazhenij. (v 2-x tomax) / Yu. Murakami. — Moskva: Mir. — 1990. — T. 1 — 448 s. — T. 2 — 1014 s. — In Russian.


Review

For citations:


Sobol B.V., Rashidova E.V., Borisova E.V., Reshetnikova O.P. EQUILIBRIUM PLANAR CRACK WITH CONTOUR ANGULAR POINTS IN ELASTIC LAYER. Vestnik of Don State Technical University. 2012;12(5):60-67. (In Russ.)

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1653 (Online)